These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25230811)
1. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Gong P; Quan H; He C Plant J; 2014 Dec; 80(5):905-14. PubMed ID: 25230811 [TBL] [Abstract][Full Text] [Related]
2. Uncovering Divergence of Rice Exon Junction Complex Core Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and Reproduction. Gong P; He C Plant Physiol; 2014 Jul; 165(3):1047-1061. PubMed ID: 24820023 [TBL] [Abstract][Full Text] [Related]
3. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. Huang CK; Sie YS; Chen YF; Huang TS; Lu CA BMC Plant Biol; 2016 Apr; 16():84. PubMed ID: 27071313 [TBL] [Abstract][Full Text] [Related]
4. Biochemical and cellular characterization of the plant ortholog of PYM, a protein that interacts with the exon junction complex core proteins Mago and Y14. Park NI; Muench DG Planta; 2007 Feb; 225(3):625-39. PubMed ID: 16953428 [TBL] [Abstract][Full Text] [Related]
5. [Functional analysis of rice P0491E01 gene regulating anther development]. Yu ZQ; Zhu J; Gao JF; Yang ZN Fen Zi Xi Bao Sheng Wu Xue Bao; 2006 Oct; 39(5):467-72. PubMed ID: 17117558 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Xiao H; Wang Y; Liu D; Wang W; Li X; Zhao X; Xu J; Zhai W; Zhu L Plant Mol Biol; 2003 Jul; 52(5):957-66. PubMed ID: 14558657 [TBL] [Abstract][Full Text] [Related]
7. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Moritoh S; Miki D; Akiyama M; Kawahara M; Izawa T; Maki H; Shimamoto K Plant Cell Physiol; 2005 May; 46(5):699-715. PubMed ID: 15792960 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization and expression analysis of a highly conserved rice mago nashil homolog. Swidzinski JA; Zaplachinski ST; Chuong SD; Wong JF; Muench DG Genome; 2001 Jun; 44(3):394-400. PubMed ID: 11444698 [TBL] [Abstract][Full Text] [Related]
9. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. Thangasamy S; Chen PW; Lai MH; Chen J; Jauh GY Plant J; 2012 Jul; 71(2):288-302. PubMed ID: 22409537 [TBL] [Abstract][Full Text] [Related]
10. WsMAGO2, a duplicated MAGO NASHI protein with fertility attributes interacts with MPF2-like MADS-box proteins. Ihsan H; Khan MR; Ajmal W; Ali GM Planta; 2015 May; 241(5):1173-87. PubMed ID: 25630441 [TBL] [Abstract][Full Text] [Related]
11. Mago Nashi and Tsunagi/Y14, respectively, regulate Drosophila germline stem cell differentiation and oocyte specification. Parma DH; Bennett PE; Boswell RE Dev Biol; 2007 Aug; 308(2):507-19. PubMed ID: 17628520 [TBL] [Abstract][Full Text] [Related]
12. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Ouyang SQ; Liu YF; Liu P; Lei G; He SJ; Ma B; Zhang WK; Zhang JS; Chen SY Plant J; 2010 Apr; 62(2):316-29. PubMed ID: 20128882 [TBL] [Abstract][Full Text] [Related]
13. Mago nashi is essential for spermatogenesis in Marsilea. van der Weele CM; Tsai CW; Wolniak SM Mol Biol Cell; 2007 Oct; 18(10):3711-22. PubMed ID: 17634289 [TBL] [Abstract][Full Text] [Related]
14. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. Gong P; Zhao M; He C PLoS One; 2014; 9(1):e84842. PubMed ID: 24416299 [TBL] [Abstract][Full Text] [Related]
15. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. He C; Sommer H; Grosardt B; Huijser P; Saedler H Mol Biol Evol; 2007 May; 24(5):1229-41. PubMed ID: 17339635 [TBL] [Abstract][Full Text] [Related]
16. Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.). Byun MY; Kim WT Plant J; 2014 Jul; 79(2):256-69. PubMed ID: 24840804 [TBL] [Abstract][Full Text] [Related]
17. OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. Li T; Jiang J; Zhang S; Shu H; Wang Y; Lai J; Du J; Yang C J Exp Bot; 2015 Sep; 66(19):5691-701. PubMed ID: 25922483 [TBL] [Abstract][Full Text] [Related]
18. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Dai M; Hu Y; Zhao Y; Liu H; Zhou DX Plant Physiol; 2007 May; 144(1):380-90. PubMed ID: 17351053 [TBL] [Abstract][Full Text] [Related]
19. A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. Chen R; Shen LP; Wang DH; Wang FG; Zeng HY; Chen ZS; Peng YB; Lin YN; Tang X; Deng MH; Yao N; Luo JC; Xu ZH; Bai SN Mol Plant; 2015 Jul; 8(7):1069-89. PubMed ID: 25684654 [TBL] [Abstract][Full Text] [Related]
20. Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Luan W; Shen A; Jin Z; Song S; Li Z; Sha A Sci China Life Sci; 2013 Dec; 56(12):1113-23. PubMed ID: 24302292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]