These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25231127)

  • 41. Al/Si Nanopillars as Very Sensitive SERS Substrates.
    Magno G; Bélier B; Barbillon G
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30149662
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shape control of Ag nanostructures for practical SERS substrates.
    Jeon TY; Park SG; Lee SY; Jeon HC; Yang SM
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):243-8. PubMed ID: 23281631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Au double nanopillars with nanogap for plasmonic sensor.
    Kubo W; Fujikawa S
    Nano Lett; 2011 Jan; 11(1):8-15. PubMed ID: 21114297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ZnGa₂O₄ nanorod arrays decorated with Ag nanoparticles as surface-enhanced Raman-scattering substrates for melamine detection.
    Chen L; Jiang D; Liu X; Qiu G
    Chemphyschem; 2014 Jun; 15(8):1624-31. PubMed ID: 24677318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication.
    Chang TW; Gartia MR; Seo S; Hsiao A; Liu GL
    Nanotechnology; 2014 Apr; 25(14):145304. PubMed ID: 24633089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays.
    Luo S; Mancini A; Lian E; Xu W; Berté R; Li Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays.
    Yang X; Zhong H; Zhu Y; Shen J; Li C
    Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.
    Cui B; Clime L; Li K; Veres T
    Nanotechnology; 2008 Apr; 19(14):145302. PubMed ID: 21817756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates.
    Zhao Y; Li X; Du Y; Chen G; Qu Y; Jiang J; Zhu Y
    Nanoscale; 2014 Oct; 6(19):11112-20. PubMed ID: 25214169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching.
    Morton KJ; Nieberg G; Bai S; Chou SY
    Nanotechnology; 2008 Aug; 19(34):345301. PubMed ID: 21730643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile fabrication of 2-dimensional arrays of sub-10 nm single crystalline Si nanopillars using nanoparticle masks.
    Hong YK; Bahng JH; Lee G; Kim H; Kim W; Lee S; Koo JY; Park JI; Lee WR; Cheon J
    Chem Commun (Camb); 2003 Dec; (24):3034-5. PubMed ID: 14703844
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wafer-scale nanofabrication of sub-100 nm arrays by deep-UV displacement Talbot lithography.
    Gómez VJ; Graczyk M; Jam RJ; Lehmann S; Maximov I
    Nanotechnology; 2020 May; 31(29):295301. PubMed ID: 32259808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays.
    Murthy BR; Ng JK; Selamat ES; Balasubramanian N; Liu WT
    Biosens Bioelectron; 2008 Dec; 24(4):723-8. PubMed ID: 18684613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars.
    Jonker D; Jafari Z; Winczewski JP; Eyovge C; Berenschot JW; Tas NR; Gardeniers JGE; De Leon I; Susarrey-Arce A
    Nanoscale Adv; 2021 Aug; 3(17):4926-4939. PubMed ID: 34485816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.
    Lovera P; Creedon N; Alatawi H; Mitchell M; Burke M; Quinn AJ; O'Riordan A
    Nanotechnology; 2014 May; 25(17):175502. PubMed ID: 24717806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins.
    Liu Z; Cheng L; Zhang L; Jing C; Shi X; Yang Z; Long Y; Fang J
    Nanoscale; 2014 Mar; 6(5):2567-72. PubMed ID: 24463635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.