BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25231736)

  • 1. Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH.
    Park SM; Yoo JC; Ji SW; Yang JS; Baek K
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3013-22. PubMed ID: 25231736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recovery of Cu, Zn, and Ni from acid mine drainage.
    Park SM; Yoo JC; Ji SW; Yang JS; Baek K
    Environ Geochem Health; 2013 Dec; 35(6):735-43. PubMed ID: 23754100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot test of pollution control and metal resource recovery for acid mine drainage.
    Yan B; Mai G; Chen T; Lei C; Xiao X
    Water Sci Technol; 2015; 72(12):2308-17. PubMed ID: 26676020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards "Precision Mining" of wastewater: Selective recovery of Cu from acid mine drainage onto diatomite supported nanoscale zerovalent iron particles.
    Crane RA; Sapsford DJ
    Chemosphere; 2018 Jul; 202():339-348. PubMed ID: 29574387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.
    Butler BA; Ranville JF; Ross PE
    Water Res; 2008 Jun; 42(12):3135-45. PubMed ID: 18433827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage.
    Ryu S; Naidu G; Moon H; Vigneswaran S
    Chemosphere; 2020 Dec; 260():127528. PubMed ID: 32682132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.
    Pavlović J; Stopić S; Friedrich B; Kamberović Z
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):518-22. PubMed ID: 18062485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorisation options for Zn and Cu recovery from metal influenced acid mine waters through selective precipitation and ion-exchange processes: promotion of on-site/off-site management options.
    Vecino X; Reig M; López J; Valderrama C; Cortina JL
    J Environ Manage; 2021 Apr; 283():112004. PubMed ID: 33529931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana.
    Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB
    Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.
    Carranza F; Romero R; Mazuelos A; Iglesias N
    J Environ Manage; 2016 Jan; 165():175-183. PubMed ID: 26433358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-treatment of acid mine drainage with municipal wastewater: performance evaluation.
    Hughes TA; Gray NF
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7863-77. PubMed ID: 23161500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach for the management of acid mine drainage (AMD) for the recovery of heavy metals along with lipid production by Chlorella vulgaris.
    Brar KK; Etteieb S; Magdouli S; Calugaru L; Brar SK
    J Environ Manage; 2022 Apr; 308():114507. PubMed ID: 35124315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.
    Cánovas CR; Macías F; Pérez-López R
    J Contam Hydrol; 2016 May; 188():29-43. PubMed ID: 26972101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.
    Đorđievski S; Ishiyama D; Ogawa Y; Stevanović Z
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25005-25019. PubMed ID: 29934829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metals in agricultural produce associated with acid-mine drainage in Mount Morgan (Queensland, Australia).
    Vicente-Beckett VA; McCauley GJ; Duivenvoorden LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(7):561-70. PubMed ID: 26979303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variations in the fate and transport of metals in a mining-influenced stream, North Fork Clear Creek, Colorado.
    Butler BA; Ranville JF; Ross PE
    Sci Total Environ; 2009 Dec; 407(24):6223-34. PubMed ID: 19801165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine.
    Oh C; Han YS; Park JH; Bok S; Cheong Y; Yim G; Ji S
    Sci Total Environ; 2016 Jul; 557-558():212-20. PubMed ID: 26994808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.