BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25231799)

  • 1. Comparative proteomic analysis of a Candida albicans DSE1 mutant under filamentous and non-filamentous conditions.
    Zohbi R; Wex B; Khalaf RA
    Yeast; 2014 Nov; 31(11):441-8. PubMed ID: 25231799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem Mass Spectrometric Cell Wall Proteome Profiling of a Candida albicans hwp2 Mutant Strain.
    Awad A; El Khoury P; Wex B; Khalaf RA
    Curr Mol Pharmacol; 2018; 11(3):211-225. PubMed ID: 29741145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic and Cell Wall Proteomic Characterization of a
    El Khoury P; Salameh C; Younes S; Awad A; Said Y; Khalaf RA
    J Microbiol Biotechnol; 2019 Nov; 29(11):1806-1816. PubMed ID: 31546294
    [No Abstract]   [Full Text] [Related]  

  • 4. The Candida albicans Dse1 Protein Is Essential and Plays a Role in Cell Wall Rigidity, Biofilm Formation, and Virulence.
    Daher JY; Koussa J; Younes S; Khalaf RA
    Interdiscip Perspect Infect Dis; 2011; 2011():504280. PubMed ID: 21760783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation.
    Hashash R; Younes S; Bahnan W; El Koussa J; Maalouf K; Dimassi HI; Khalaf RA
    Mycoses; 2011 Nov; 54(6):491-500. PubMed ID: 20406396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of a Candida albicans pir32 null strain reveals proteins involved in adhesion, filamentation and virulence.
    El Khoury P; Awad A; Wex B; Khalaf RA
    PLoS One; 2018; 13(3):e0194403. PubMed ID: 29554112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of experimentally induced azole resistance in Candida glabrata.
    Rogers PD; Vermitsky JP; Edlind TD; Hilliard GM
    J Antimicrob Chemother; 2006 Aug; 58(2):434-8. PubMed ID: 16735426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry.
    Melanson JE; Chisholm KA; Pinto DM
    Rapid Commun Mass Spectrom; 2006; 20(5):904-10. PubMed ID: 16470697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of a
    Awad A; El Khoury P; Wex B; Khalaf RA
    EuPA Open Proteom; 2018 Jun; 18():1-6. PubMed ID: 29928583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Candida albicans plasma membrane proteome.
    Cabezón V; Llama-Palacios A; Nombela C; Monteoliva L; Gil C
    Proteomics; 2009 Oct; 9(20):4770-86. PubMed ID: 19824013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition.
    Bahnan W; Koussa J; Younes S; Abi Rizk M; Khalil B; El Sitt S; Hanna S; El-Sibai M; Khalaf RA
    Mycopathologia; 2012 Aug; 174(2):107-19. PubMed ID: 22391823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of proteomic analysis to the study of azole antifungal resistance in Candida albicans.
    Hooshdaran MZ; Hilliard GM; Rogers PD
    Methods Mol Med; 2005; 118():57-70. PubMed ID: 15888935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Null mutants of Candida albicans for cell-wall-related genes form fragile biofilms that display an almost identical extracellular matrix proteome.
    Martínez JP; Blanes R; Casanova M; Valentín E; Murgui A; Domínguez Á
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27609602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-D-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans.
    Kamthan M; Mukhopadhyay G; Chakraborty N; Chakraborty S; Datta A
    Fungal Genet Biol; 2012 May; 49(5):369-78. PubMed ID: 22406769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mitochondrial proteomics view of complex I deficiency in Candida albicans.
    She X; Zhang P; Gao Y; Zhang L; Wang Q; Chen H; Calderone R; Liu W; Li D
    Mitochondrion; 2018 Jan; 38():48-57. PubMed ID: 28801230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upc2p-associated differential protein expression in Candida albicans.
    Hoehamer CF; Cummings ED; Hilliard GM; Morschhäuser J; David Rogers P
    Proteomics; 2009 Oct; 9(20):4726-30. PubMed ID: 19750515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress.
    Kim I; Yun H; Jin I
    J Microbiol Biotechnol; 2007 Feb; 17(2):207-17. PubMed ID: 18051751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum.
    Aoki W; Ueda T; Tatsukami Y; Kitahara N; Morisaka H; Kuroda K; Ueda M
    Pathog Dis; 2013 Feb; 67(1):67-75. PubMed ID: 23620121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach.
    Hernáez ML; Ximénez-Embún P; Martínez-Gomariz M; Gutiérrez-Blázquez MD; Nombela C; Gil C
    J Proteomics; 2010 May; 73(7):1404-9. PubMed ID: 20167299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mass spectrometric view of the fungal wall proteome.
    Klis FM; de Koster CG; Brul S
    Future Microbiol; 2011 Aug; 6(8):941-51. PubMed ID: 21861624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.