These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 25232031)
1. Hypoxia promotes dissemination and colonization in new bone marrow niches in Waldenström macroglobulinemia. Muz B; de la Puente P; Azab F; Ghobrial IM; Azab AK Mol Cancer Res; 2015 Feb; 13(2):263-72. PubMed ID: 25232031 [TBL] [Abstract][Full Text] [Related]
2. The Bone Marrow Microenvironment in Waldenström Macroglobulinemia. Jalali S; Ansell SM Hematol Oncol Clin North Am; 2018 Oct; 32(5):777-786. PubMed ID: 30190017 [TBL] [Abstract][Full Text] [Related]
3. FGFR3 is overexpressed waldenstrom macroglobulinemia and its inhibition by Dovitinib induces apoptosis and overcomes stroma-induced proliferation. Azab AK; Azab F; Quang P; Maiso P; Sacco A; Ngo HT; Liu Y; Zhang Y; Morgan BL; Roccaro AM; Ghobrial IM Clin Cancer Res; 2011 Jul; 17(13):4389-99. PubMed ID: 21521775 [TBL] [Abstract][Full Text] [Related]
4. Targeting the bone marrow in Waldenstrom macroglobulinemia. Ghobrial IM; Zhang Y; Liu Y; Ngo H; Azab F; Sacco A; Azab A; Maiso P; Morgan B; Quang P; Issa GC; Leleu X; Roccaro AM Clin Lymphoma Myeloma Leuk; 2011 Jun; 11 Suppl 1(Suppl 1):S65-9. PubMed ID: 22035751 [TBL] [Abstract][Full Text] [Related]
5. Targeting survival and cell trafficking in multiple myeloma and Waldenstrom macroglobulinemia using pan-class I PI3K inhibitor, buparlisib. Sahin I; Azab F; Mishima Y; Moschetta M; Tsang B; Glavey SV; Manier S; Zhang Y; Sacco A; Roccaro AM; Azab AK; Ghobrial IM Am J Hematol; 2014 Nov; 89(11):1030-6. PubMed ID: 25060991 [TBL] [Abstract][Full Text] [Related]
6. Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia. Ngo HT; Azab AK; Farag M; Jia X; Melhem MM; Runnels J; Roccaro AM; Azab F; Sacco A; Leleu X; Anderson KC; Ghobrial IM Clin Cancer Res; 2009 Oct; 15(19):6035-41. PubMed ID: 19755386 [TBL] [Abstract][Full Text] [Related]
7. Eph-B2/ephrin-B2 interaction plays a major role in the adhesion and proliferation of Waldenstrom's macroglobulinemia. Azab F; Azab AK; Maiso P; Calimeri T; Flores L; Liu Y; Quang P; Roccaro AM; Sacco A; Ngo HT; Zhang Y; Morgan BL; Carrasco RD; Ghobrial IM Clin Cancer Res; 2012 Jan; 18(1):91-104. PubMed ID: 22010211 [TBL] [Abstract][Full Text] [Related]
8. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Ngo HT; Leleu X; Lee J; Jia X; Melhem M; Runnels J; Moreau AS; Burwick N; Azab AK; Roccaro A; Azab F; Sacco A; Farag M; Sackstein R; Ghobrial IM Blood; 2008 Jul; 112(1):150-8. PubMed ID: 18448868 [TBL] [Abstract][Full Text] [Related]
9. CXCR4-targeted PET imaging using Muz B; Bandara N; Mpoy C; Sun J; Alhallak K; Azab F; Rogers BE; Azab AK Cancer Biol Ther; 2020; 21(1):52-60. PubMed ID: 31571524 [No Abstract] [Full Text] [Related]
10. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Azab AK; Hu J; Quang P; Azab F; Pitsillides C; Awwad R; Thompson B; Maiso P; Sun JD; Hart CP; Roccaro AM; Sacco A; Ngo HT; Lin CP; Kung AL; Carrasco RD; Vanderkerken K; Ghobrial IM Blood; 2012 Jun; 119(24):5782-94. PubMed ID: 22394600 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of activity of the TORC1 inhibitor everolimus in Waldenstrom macroglobulinemia. Roccaro AM; Sacco A; Jia X; Banwait R; Maiso P; Azab F; Flores L; Manier S; Azab AK; Ghobrial IM Clin Cancer Res; 2012 Dec; 18(24):6609-22. PubMed ID: 23048077 [TBL] [Abstract][Full Text] [Related]
12. The bone marrow microenvironment in Waldenström macroglobulinemia. Agarwal A; Ghobrial IM Clin Lymphoma Myeloma Leuk; 2013 Apr; 13(2):218-21. PubMed ID: 23490994 [TBL] [Abstract][Full Text] [Related]
13. ROS-Induced CXCR4 Signaling Regulates Mantle Cell Lymphoma (MCL) Cell Survival and Drug Resistance in the Bone Marrow Microenvironment via Autophagy. Chen Z; Teo AE; McCarty N Clin Cancer Res; 2016 Jan; 22(1):187-99. PubMed ID: 26350264 [TBL] [Abstract][Full Text] [Related]
14. IL-21 in the bone marrow microenvironment contributes to IgM secretion and proliferation of malignant cells in Waldenstrom macroglobulinemia. Hodge LS; Ziesmer SC; Yang ZZ; Secreto FJ; Gertz MA; Novak AJ; Ansell SM Blood; 2012 Nov; 120(18):3774-82. PubMed ID: 22976953 [TBL] [Abstract][Full Text] [Related]
15. The bone marrow niche in Waldenström's macroglobulinemia. Ghobrial IM; Zhang Y; Liu Y; Ngo H; Azab F; Sacco A; Azab A; Maiso P; Morgan B; Quang P; Issa G; Roccaro A Clin Lymphoma Myeloma Leuk; 2011 Feb; 11(1):118-20. PubMed ID: 21454209 [TBL] [Abstract][Full Text] [Related]
16. Initial Evaluation of the Patient with Waldenström Macroglobulinemia. Castillo JJ; Treon SP Hematol Oncol Clin North Am; 2018 Oct; 32(5):811-820. PubMed ID: 30190019 [TBL] [Abstract][Full Text] [Related]
17. Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current Therapies. Boutilier AJ; Huang L; Elsawa SF Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232447 [TBL] [Abstract][Full Text] [Related]
18. Bone marrow microenvironment in Waldenstrom's Macroglobulinemia. Jalali S; Ansell SM Best Pract Res Clin Haematol; 2016 Jun; 29(2):148-155. PubMed ID: 27825460 [TBL] [Abstract][Full Text] [Related]
19. New insights into the pathogenesis and treatment of Waldenstrom macroglobulinemia. Issa GC; Leblebjian H; Roccaro AM; Ghobrial IM Curr Opin Hematol; 2011 Jul; 18(4):260-5. PubMed ID: 21519243 [TBL] [Abstract][Full Text] [Related]
20. Targeting cell adhesion and homing as strategy to cure Waldenström's macroglobulinemia. Pals ST; Kersten MJ; Spaargaren M Best Pract Res Clin Haematol; 2016 Jun; 29(2):161-168. PubMed ID: 27825462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]