These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 2523213)
1. Effect of citreoviridin and isocitreoviridin on beef heart mitochondrial ATPase. Sayood SF; Suh H; Wilcox CS; Schuster SM Arch Biochem Biophys; 1989 May; 270(2):714-21. PubMed ID: 2523213 [TBL] [Abstract][Full Text] [Related]
2. Influence of efrapeptin, aurovertin and citreoviridin on the mitochondrial adenosine triphosphatase from Trypanosoma cruzi. Cataldi de Flombaum MA; Stoppani AO Mol Biochem Parasitol; 1981 Jul; 3(3):143-55. PubMed ID: 6454845 [TBL] [Abstract][Full Text] [Related]
3. Binding of citreoviridin to the beta subunit of the yeast F1-ATPase. Gause EM; Buck MA; Douglas MG J Biol Chem; 1981 Jan; 256(2):557-9. PubMed ID: 6450205 [TBL] [Abstract][Full Text] [Related]
4. The effect of Co(III)(NH3)4ATP on the kinetics of beef heart mitochondrial ATPase. Steinke L; Schuster SM Arch Biochem Biophys; 1985 May; 238(2):629-35. PubMed ID: 2859840 [TBL] [Abstract][Full Text] [Related]
5. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase. Linnett PE; Mitchell AD; Osselton MD; Mulheirn LJ; Beechey RB Biochem J; 1978 Mar; 170(3):503-10. PubMed ID: 148274 [TBL] [Abstract][Full Text] [Related]
6. The native mitochondrial F1-inhibitor protein complex carries out uni- and multisite ATP hydrolysis. Vázquez-Laslop N; Dreyfus G J Biol Chem; 1990 Nov; 265(31):19002-6. PubMed ID: 2146268 [TBL] [Abstract][Full Text] [Related]
7. Aurovertin fluorescence changes of the mitochondrial F1-ATPase during multi- and uni-site ATP hydrolysis. Vázquez-Laslop N; Ramírez J; Dreyfus G J Biol Chem; 1989 Oct; 264(29):17064-8. PubMed ID: 2529256 [TBL] [Abstract][Full Text] [Related]
8. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate. Murataliev MB Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210 [TBL] [Abstract][Full Text] [Related]
9. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
10. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP. Thomassen J; Klungsøyr L Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689 [TBL] [Abstract][Full Text] [Related]
11. Beef heart mitochondrial F1-ATPase: inhibition by azidoadenyl-5'-yl imidodiphosphates and cooperative binding of substrate. Eckhardt U; Hanstein WG Biochim Biophys Acta; 1993 Oct; 1144(3):419-25. PubMed ID: 8399286 [TBL] [Abstract][Full Text] [Related]
12. An ATP dependence of mitochondrial F1-ATPase inactivation by the natural inhibitor protein agrees with the alternating-site binding-change mechanism. Milgrom YaM FEBS Lett; 1989 Mar; 246(1-2):202-6. PubMed ID: 2523318 [TBL] [Abstract][Full Text] [Related]
13. Relationships of inosine triphosphate and bicarbonate effects on F1 ATPase to the binding change mechanism. Kasho VN; Boyer PD J Bioenerg Biomembr; 1984 Dec; 16(5-6):407-19. PubMed ID: 6242244 [TBL] [Abstract][Full Text] [Related]
14. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
15. Structural alterations and inhibition of unisite and multisite ATP hydrolysis in soluble mitochondrial F1 by guanidinium chloride. Tuena de Gómez-Puyou M; Domínguez-Ramírez L; Reyes-Vivas H; Gómez-Puyou A Biochemistry; 2001 Mar; 40(11):3396-402. PubMed ID: 11258961 [TBL] [Abstract][Full Text] [Related]
16. Aurovertin binding sites on beef heart mitochondrial F1-ATPase. Study with [14C]aurovertin D of the binding stoichiometry and of the interaction between aurovertin and the natural ATPase inhibitor for binding to F1. Issartel JP; Klein G; Satre M; Vignais PV Biochemistry; 1983 Jul; 22(14):3492-7. PubMed ID: 6225456 [No Abstract] [Full Text] [Related]
17. The effects of exchange-inert metal-nucleotide complexes on the kinetics of beef heart mitochondrial F1-ATPase. Steinke L; Bacon R; Schuster SM Arch Biochem Biophys; 1987 Nov; 258(2):482-90. PubMed ID: 2890328 [TBL] [Abstract][Full Text] [Related]
18. Epsilon subunit of Escherichia coli F1-ATPase: effects on affinity for aurovertin and inhibition of product release in unisite ATP hydrolysis. Dunn SD; Zadorozny VD; Tozer RG; Orr LE Biochemistry; 1987 Jul; 26(14):4488-93. PubMed ID: 2889464 [TBL] [Abstract][Full Text] [Related]
19. The complex of mitochondrial F1-ATPase with the natural inhibitor protein is unable to catalyze single-site ATP hydrolysis. Kalashnikova TYu ; Milgrom YaM ; Postanogova NV FEBS Lett; 1988 Mar; 230(1-2):163-6. PubMed ID: 2895018 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of mitochondrial F1-ATPase activity by an anti-alpha subunit monoclonal antibody which modifies interactions between catalytic and regulatory sites. Moradi-Améli M; Julliard JH; Godinot C J Biol Chem; 1989 Jan; 264(3):1361-7. PubMed ID: 2536364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]