BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2523213)

  • 1. Effect of citreoviridin and isocitreoviridin on beef heart mitochondrial ATPase.
    Sayood SF; Suh H; Wilcox CS; Schuster SM
    Arch Biochem Biophys; 1989 May; 270(2):714-21. PubMed ID: 2523213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of efrapeptin, aurovertin and citreoviridin on the mitochondrial adenosine triphosphatase from Trypanosoma cruzi.
    Cataldi de Flombaum MA; Stoppani AO
    Mol Biochem Parasitol; 1981 Jul; 3(3):143-55. PubMed ID: 6454845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of citreoviridin to the beta subunit of the yeast F1-ATPase.
    Gause EM; Buck MA; Douglas MG
    J Biol Chem; 1981 Jan; 256(2):557-9. PubMed ID: 6450205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Co(III)(NH3)4ATP on the kinetics of beef heart mitochondrial ATPase.
    Steinke L; Schuster SM
    Arch Biochem Biophys; 1985 May; 238(2):629-35. PubMed ID: 2859840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase.
    Linnett PE; Mitchell AD; Osselton MD; Mulheirn LJ; Beechey RB
    Biochem J; 1978 Mar; 170(3):503-10. PubMed ID: 148274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The native mitochondrial F1-inhibitor protein complex carries out uni- and multisite ATP hydrolysis.
    Vázquez-Laslop N; Dreyfus G
    J Biol Chem; 1990 Nov; 265(31):19002-6. PubMed ID: 2146268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aurovertin fluorescence changes of the mitochondrial F1-ATPase during multi- and uni-site ATP hydrolysis.
    Vázquez-Laslop N; Ramírez J; Dreyfus G
    J Biol Chem; 1989 Oct; 264(29):17064-8. PubMed ID: 2529256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP.
    Thomassen J; Klungsøyr L
    Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beef heart mitochondrial F1-ATPase: inhibition by azidoadenyl-5'-yl imidodiphosphates and cooperative binding of substrate.
    Eckhardt U; Hanstein WG
    Biochim Biophys Acta; 1993 Oct; 1144(3):419-25. PubMed ID: 8399286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ATP dependence of mitochondrial F1-ATPase inactivation by the natural inhibitor protein agrees with the alternating-site binding-change mechanism.
    Milgrom YaM
    FEBS Lett; 1989 Mar; 246(1-2):202-6. PubMed ID: 2523318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships of inosine triphosphate and bicarbonate effects on F1 ATPase to the binding change mechanism.
    Kasho VN; Boyer PD
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):407-19. PubMed ID: 6242244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural alterations and inhibition of unisite and multisite ATP hydrolysis in soluble mitochondrial F1 by guanidinium chloride.
    Tuena de Gómez-Puyou M; Domínguez-Ramírez L; Reyes-Vivas H; Gómez-Puyou A
    Biochemistry; 2001 Mar; 40(11):3396-402. PubMed ID: 11258961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aurovertin binding sites on beef heart mitochondrial F1-ATPase. Study with [14C]aurovertin D of the binding stoichiometry and of the interaction between aurovertin and the natural ATPase inhibitor for binding to F1.
    Issartel JP; Klein G; Satre M; Vignais PV
    Biochemistry; 1983 Jul; 22(14):3492-7. PubMed ID: 6225456
    [No Abstract]   [Full Text] [Related]  

  • 17. The effects of exchange-inert metal-nucleotide complexes on the kinetics of beef heart mitochondrial F1-ATPase.
    Steinke L; Bacon R; Schuster SM
    Arch Biochem Biophys; 1987 Nov; 258(2):482-90. PubMed ID: 2890328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epsilon subunit of Escherichia coli F1-ATPase: effects on affinity for aurovertin and inhibition of product release in unisite ATP hydrolysis.
    Dunn SD; Zadorozny VD; Tozer RG; Orr LE
    Biochemistry; 1987 Jul; 26(14):4488-93. PubMed ID: 2889464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complex of mitochondrial F1-ATPase with the natural inhibitor protein is unable to catalyze single-site ATP hydrolysis.
    Kalashnikova TYu ; Milgrom YaM ; Postanogova NV
    FEBS Lett; 1988 Mar; 230(1-2):163-6. PubMed ID: 2895018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of mitochondrial F1-ATPase activity by an anti-alpha subunit monoclonal antibody which modifies interactions between catalytic and regulatory sites.
    Moradi-Améli M; Julliard JH; Godinot C
    J Biol Chem; 1989 Jan; 264(3):1361-7. PubMed ID: 2536364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.