These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 2523213)
41. Beef heart mitochondrial adenosine triphosphatase-catalyzed formation of a transition state analog in ATP synthesis. Bossard MJ; Vik TA; Schuster SM J Biol Chem; 1980 Jun; 255(11):5342-6. PubMed ID: 6445363 [TBL] [Abstract][Full Text] [Related]
42. Rate of chase-promoted hydrolysis of ATP in the high affinity catalytic site of beef heart mitochondrial ATPase. Penefsky HS J Biol Chem; 1988 May; 263(13):6020-2. PubMed ID: 2896192 [TBL] [Abstract][Full Text] [Related]
43. Synthesis of ATP by soluble mitochondrial F1 ATPase and F1-inhibitor-protein complex in the presence of organic solvents. Gómez Puyou A; Tuena de Gómez Puyou M; de Meis L Eur J Biochem; 1986 Aug; 159(1):133-40. PubMed ID: 2874988 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of pyrophosphate and ATP by soluble mitochondrial F1. Tuena de Gómez-Puyou M; de Jesús García J; Gómez-Puyou A Biochemistry; 1993 Mar; 32(9):2213-8. PubMed ID: 8382946 [TBL] [Abstract][Full Text] [Related]
45. Mitochondrial Ca Algieri C; Trombetti F; Pagliarani A; Ventrella V; Bernardini C; Fabbri M; Forni M; Nesci S Ann N Y Acad Sci; 2019 Dec; 1457(1):142-157. PubMed ID: 31441951 [TBL] [Abstract][Full Text] [Related]
46. Dependence of the activity of beef heart mitochondrial adenosinetriphosphatase on the properties of the catalytic metal ion. Urbauer JL; Dorgan LJ; Tomaszek TA; Schuster SM Biochemistry; 1987 May; 26(10):2914-24. PubMed ID: 2886148 [TBL] [Abstract][Full Text] [Related]
47. Catalysis of partial reactions of ATP synthesis by beef heart mitochondrial adenosine triphosphatase. Bossard MJ; Schuster SM J Biol Chem; 1981 Feb; 256(4):1518-21. PubMed ID: 6450758 [TBL] [Abstract][Full Text] [Related]
48. A kinetic study of the interaction between mitochondrial F1 adenosine triphosphatase and adenylyl imidodiphosphate and guanylyl imidodiphosphate. Belda FJ; Carmona FG; Cánovas FG; Gómez-Fernández JC; Lozano JA Biochem J; 1983 Mar; 210(3):727-35. PubMed ID: 6223627 [TBL] [Abstract][Full Text] [Related]
49. Inactivation of beef heart mitochondrial F1-ATPase by the 2',3'-dialdehyde derivatives of adenine nucleotides. de Melo DF; Satre M; Vignais PV FEBS Lett; 1984 Apr; 169(1):101-6. PubMed ID: 6232149 [TBL] [Abstract][Full Text] [Related]
50. Identification of an exchangeable non-catalytic site on mitochondrial F1-ATPase which is involved in the negative cooperativity of ATP hydrolysis. Edel CM; Hartog AF; Berden JA Biochim Biophys Acta; 1993 May; 1142(3):327-35. PubMed ID: 8481383 [TBL] [Abstract][Full Text] [Related]
51. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein. Tuena de Gómez-Puyou MT; Muller U; Dreyfus G; Ayala G; Gómez-Puyou A J Biol Chem; 1983 Nov; 258(22):13680-4. PubMed ID: 6227615 [TBL] [Abstract][Full Text] [Related]
52. Quinacrine mustard inactivates the bovine heart mitochondrial F1-ATPase with the modification of the beta subunit. Laikind PK; Allison WS J Biol Chem; 1983 Oct; 258(19):11700-4. PubMed ID: 6225779 [TBL] [Abstract][Full Text] [Related]
53. Mechanism of ATP synthesis by mitochondrial ATP synthase from beef heart. Souid AK; Penefsky HS J Bioenerg Biomembr; 1994 Dec; 26(6):627-30. PubMed ID: 7721724 [TBL] [Abstract][Full Text] [Related]
54. Binding and hydrolysis of 2-azido-ATP and 8-azido-ATP by isolated mitochondrial F1: characterisation of high-affinity binding sites. van Dongen MB; de Geus JP; Korver T; Hartog AF; Berden JA Biochim Biophys Acta; 1986 Jul; 850(2):359-68. PubMed ID: 2872922 [TBL] [Abstract][Full Text] [Related]
55. Interaction of beef-heart mitochondrial ATPase, coupling factor F1, with aurovertin. Yeates RA Biochim Biophys Acta; 1974 Feb; 333(2):173-9. PubMed ID: 19400029 [TBL] [Abstract][Full Text] [Related]
56. The effect of nitration and D2O on the kinetics of beef heart mitochondrial adenosine triphosphatase. Dorgan LJ; Schuster SM J Biol Chem; 1981 Apr; 256(8):3910-6. PubMed ID: 6452457 [TBL] [Abstract][Full Text] [Related]
57. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol. Flores GO; Acosta A; Puyou AG Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356 [TBL] [Abstract][Full Text] [Related]
58. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems. Matsuno-Yagi A; Hatefi Y Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851 [TBL] [Abstract][Full Text] [Related]
59. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Grover GJ; Atwal KS; Sleph PG; Wang FL; Monshizadegan H; Monticello T; Green DW Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1747-55. PubMed ID: 15371268 [TBL] [Abstract][Full Text] [Related]
60. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase. Papa S; Zanotti F; Cocco T; Perrucci C; Candita C; Minuto M Eur J Biochem; 1996 Sep; 240(2):461-7. PubMed ID: 8841413 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]