These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25232195)

  • 21. The perception of verticality in lunar and Martian gravity conditions.
    de Winkel KN; Clément G; Groen EL; Werkhoven PJ
    Neurosci Lett; 2012 Oct; 529(1):7-11. PubMed ID: 22999922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between gait transition speed and the aerobic thresholds for walking and running.
    Sentija D; Markovic G
    Int J Sports Med; 2009 Nov; 30(11):795-801. PubMed ID: 19838979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Why not walk faster?
    Usherwood JR
    Biol Lett; 2005 Sep; 1(3):338-41. PubMed ID: 17148201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
    Sasaki K; Neptune RR
    Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Temporal pattern of walking on various training facilities under the conditions of the earth's and simulated lunar gravity].
    Panfilov VE; Gurfinkel' VS
    Aviakosm Ekolog Med; 2009; 43(5):54-7. PubMed ID: 20120918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Space suit bioenergetics: framework and analysis of unsuited and suited activity.
    Carr CE; Newman DJ
    Aviat Space Environ Med; 2007 Nov; 78(11):1013-22. PubMed ID: 18018432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human locomotion and workload for simulated lunar and Martian environments.
    Newman DJ; Alexander HL
    Acta Astronaut; 1993 Aug; 29(8):613-20. PubMed ID: 11541642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preferred transition speed between walking and running: effects of training status.
    Rotstein A; Inbar O; Berginsky T; Meckel Y
    Med Sci Sports Exerc; 2005 Nov; 37(11):1864-70. PubMed ID: 16286854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changing the demand on specific muscle groups affects the walk-run transition speed.
    Bartlett JL; Kram R
    J Exp Biol; 2008 Apr; 211(Pt 8):1281-8. PubMed ID: 18375853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical and energetic determinants of the walk-trot transition in horses.
    Griffin TM; Kram R; Wickler SJ; Hoyt DF
    J Exp Biol; 2004 Nov; 207(Pt 24):4215-23. PubMed ID: 15531642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant biology in reduced gravity on the Moon and Mars.
    Kiss JZ
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():12-7. PubMed ID: 23889757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.
    Hubel TY; Usherwood JR
    Biol Lett; 2013 Apr; 9(2):20121121. PubMed ID: 23325739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hopping in hypogravity-A rationale for a plyometric exercise countermeasure in planetary exploration missions.
    Weber T; Green DA; Attias J; Sies W; Frechette A; Braunstein B; Rittweger J
    PLoS One; 2019; 14(2):e0211263. PubMed ID: 30759113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partial weight bearing does not prevent musculoskeletal losses associated with disuse.
    Swift JM; Lima F; Macias BR; Allen MR; Greene ES; Shirazi-Fard Y; Kupke JS; Hogan HA; Bloomfield SA
    Med Sci Sports Exerc; 2013 Nov; 45(11):2052-60. PubMed ID: 23657172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The lunar environment as a fractional-gravity biological laboratory.
    Garshnek V
    Acta Astronaut; 1994 Jul; 33():211-5. PubMed ID: 11539524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications.
    Lacquaniti F; Ivanenko YP; Sylos-Labini F; La Scaleia V; La Scaleia B; Willems PA; Zago M
    Front Physiol; 2017; 8():893. PubMed ID: 29163225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Humans running in place on water at simulated reduced gravity.
    Minetti AE; Ivanenko YP; Cappellini G; Dominici N; Lacquaniti F
    PLoS One; 2012; 7(7):e37300. PubMed ID: 22815681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of physical workload in reduced gravity.
    Goldberg JH; Alred JW
    Aviat Space Environ Med; 1988 Dec; 59(12):1150-7. PubMed ID: 3240215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.