These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25232648)

  • 1. Standing surface acoustic wave based cell coculture.
    Li S; Guo F; Chen Y; Ding X; Li P; Wang L; Cameron CE; Huang TJ
    Anal Chem; 2014 Oct; 86(19):9853-9. PubMed ID: 25232648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standing surface acoustic wave (SSAW)-based cell washing.
    Li S; Ding X; Mao Z; Chen Y; Nama N; Guo F; Li P; Wang L; Cameron CE; Huang TJ
    Lab Chip; 2015 Jan; 15(1):331-8. PubMed ID: 25372273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW).
    Chen Y; Li S; Gu Y; Li P; Ding X; Wang L; McCoy JP; Levine SJ; Huang TJ
    Lab Chip; 2014 Mar; 14(5):924-30. PubMed ID: 24413889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.
    Chen Y; Nawaz AA; Zhao Y; Huang PH; McCoy JP; Levine SJ; Wang L; Huang TJ
    Lab Chip; 2014 Mar; 14(5):916-23. PubMed ID: 24406848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter.
    Ren L; Yang S; Zhang P; Qu Z; Mao Z; Huang PH; Chen Y; Wu M; Wang L; Li P; Huang TJ
    Small; 2018 Oct; 14(40):e1801996. PubMed ID: 30168662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An on-chip, multichannel droplet sorter using standing surface acoustic waves.
    Li S; Ding X; Guo F; Chen Y; Lapsley MI; Lin SC; Wang L; McCoy JP; Cameron CE; Huang TJ
    Anal Chem; 2013 Jun; 85(11):5468-74. PubMed ID: 23647057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system.
    Zheng C; Zhao L; Chen G; Zhou Y; Pang Y; Huang Y
    Anal Chem; 2012 Feb; 84(4):2088-93. PubMed ID: 22263607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.
    Ai Y; Sanders CK; Marrone BL
    Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology.
    Gao Y; Majumdar D; Jovanovic B; Shaifer C; Lin PC; Zijlstra A; Webb DJ; Li D
    Biomed Microdevices; 2011 Jun; 13(3):539-48. PubMed ID: 21424383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotypic cell interactions on a dually patterned surface.
    Tsuda Y; Kikuchi A; Yamato M; Chen G; Okano T
    Biochem Biophys Res Commun; 2006 Sep; 348(3):937-44. PubMed ID: 16901464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
    Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ
    Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable patterning of microparticles and cells using standing surface acoustic waves.
    Ding X; Shi J; Lin SC; Yazdi S; Kiraly B; Huang TJ
    Lab Chip; 2012 Jul; 12(14):2491-7. PubMed ID: 22648600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device.
    Kaji H; Yokoi T; Kawashima T; Nishizawa M
    Lab Chip; 2010 Sep; 10(18):2374-9. PubMed ID: 20563348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia influences the effects of magnesium degradation products on the interactions between endothelial and mesenchymal stem cells.
    Xu L; Willumeit-Römer R; Luthringer-Feyerabend B
    Acta Biomater; 2020 Jan; 101():624-636. PubMed ID: 31622779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel method to examine hepatocyte-specific gene expression in a functional coculture system.
    Kurosawa Y; Taniguchi A; Okano T
    Tissue Eng; 2005; 11(11-12):1650-7. PubMed ID: 16411810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell migration into scaffolds under co-culture conditions in a microfluidic platform.
    Chung S; Sudo R; Mack PJ; Wan CR; Vickerman V; Kamm RD
    Lab Chip; 2009 Jan; 9(2):269-75. PubMed ID: 19107284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling cell-cell interactions using surface acoustic waves.
    Guo F; Li P; French JB; Mao Z; Zhao H; Li S; Nama N; Fick JR; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):43-8. PubMed ID: 25535339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable and label-free bacteria alignment using standing surface acoustic waves.
    Toru S; Frenea-Robin M; Haddour N; Buret F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4998-5001. PubMed ID: 23367050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.