These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25232859)

  • 21. Steered molecular dynamics simulations of Na+ permeation across the gramicidin A channel.
    Liu Z; Xu Y; Tang P
    J Phys Chem B; 2006 Jun; 110(25):12789-95. PubMed ID: 16800614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the free-energy landscapes of biological systems with steered molecular dynamics.
    Chen LY
    Phys Chem Chem Phys; 2011 Apr; 13(13):6176-83. PubMed ID: 21359274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of the Free Energy Profile for SUMO1 from Nonequilibrium Single-Molecule Pulling Experiments.
    Nandi T; Koti Ainavarapu SR
    J Phys Chem B; 2022 Mar; 126(11):2168-2172. PubMed ID: 35271281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The free energy of expansion and contraction: treatment of arbitrary systems using the Jarzynski equality.
    Davie SJ; Reid JC; Searles DJ
    J Chem Phys; 2012 May; 136(17):174111. PubMed ID: 22583214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of umbrella sampling and steered molecular dynamics methods for computing free energy profiles of aromatic substrates through phospholipid bilayers.
    Noh SY; Notman R
    J Chem Phys; 2020 Jul; 153(3):034115. PubMed ID: 32716163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming dissipation in the calculation of standard binding free energies by ligand extraction.
    Velez-Vega C; Gilson MK
    J Comput Chem; 2013 Oct; 34(27):2360-71. PubMed ID: 24038118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reweighted Jarzynski Sampling: Acceleration of Rare Events and Free Energy Calculation with a Bias Potential Learned from Nonequilibrium Work.
    Bal KM
    J Chem Theory Comput; 2021 Nov; 17(11):6766-6774. PubMed ID: 34714088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium free-energy differences from a linear nonequilibrium equality.
    Li G; Tu ZC
    Phys Rev E; 2021 Mar; 103(3-1):032146. PubMed ID: 33862756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
    Boulougouris GC
    J Comput Chem; 2014 May; 35(13):1024-35. PubMed ID: 24664967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Dec; 110(51):26448-60. PubMed ID: 17181305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unbinding pathway energy of glyphosate from the EPSPs enzyme binding site characterized by Steered Molecular Dynamics and Potential of Mean Force.
    Ferreira MF; Franca EF; Leite FL
    J Mol Graph Model; 2017 Mar; 72():43-49. PubMed ID: 28033555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
    Okimoto N; Suenaga A; Taiji M
    J Biomol Struct Dyn; 2017 Nov; 35(15):3221-3231. PubMed ID: 27771988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Jarzynski equality: connections to thermodynamics and the second law.
    Palmieri B; Ronis D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011133. PubMed ID: 17358136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.
    Ramírez CL; Martí MA; Roitberg AE
    Methods Enzymol; 2016; 578():123-43. PubMed ID: 27497165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A potential of mean force estimator based on nonequilibrium work exponential averages.
    Chelli R; Procacci P
    Phys Chem Chem Phys; 2009 Feb; 11(8):1152-8. PubMed ID: 19209357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of work in single-molecule pulling experiments.
    Mossa A; de Lorenzo S; Huguet JM; Ritort F
    J Chem Phys; 2009 Jun; 130(23):234116. PubMed ID: 19548720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single molecule force spectroscopy of a streptomycin-binding RNA aptamer: An out-of-equilibrium molecular dynamics study.
    Baptista LA; Netz PA
    J Chem Phys; 2019 Nov; 151(19):195102. PubMed ID: 31757139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of nucleotide translocation through protein nanopores using steered molecular dynamics and an adaptive biasing force.
    Martin HS; Jha S; Coveney PV
    J Comput Chem; 2014 Apr; 35(9):692-702. PubMed ID: 24403093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the accurate estimation of free energies using the jarzynski equality.
    Arrar M; Boubeta FM; Szretter ME; Sued M; Boechi L; Rodriguez D
    J Comput Chem; 2019 Feb; 40(4):688-696. PubMed ID: 30565267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entropy-energy decomposition from nonequilibrium work trajectories.
    Nummela J; Yassin F; Andricioaei I
    J Chem Phys; 2008 Jan; 128(2):024104. PubMed ID: 18205440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.