These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 25232892)
1. A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers. Gall DL; Ralph J; Donohue TJ; Noguera DR Environ Sci Technol; 2014 Oct; 48(20):12454-63. PubMed ID: 25232892 [TBL] [Abstract][Full Text] [Related]
3. Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway. Gall DL; Kim H; Lu F; Donohue TJ; Noguera DR; Ralph J J Biol Chem; 2014 Mar; 289(12):8656-67. PubMed ID: 24509858 [TBL] [Abstract][Full Text] [Related]
4. Gall DL; Kontur WS; Lan W; Kim H; Li Y; Ralph J; Donohue TJ; Noguera DR Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180366 [TBL] [Abstract][Full Text] [Related]
6. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin. Helmich KE; Pereira JH; Gall DL; Heins RA; McAndrew RP; Bingman C; Deng K; Holland KC; Noguera DR; Simmons BA; Sale KL; Ralph J; Donohue TJ; Adams PD; Phillips GN J Biol Chem; 2016 Mar; 291(10):5234-46. PubMed ID: 26637355 [TBL] [Abstract][Full Text] [Related]
7. Roles of two glutathione S-transferases in the final step of the β-aryl ether cleavage pathway in Sphingobium sp. strain SYK-6. Higuchi Y; Sato D; Kamimura N; Masai E Sci Rep; 2020 Nov; 10(1):20614. PubMed ID: 33244017 [TBL] [Abstract][Full Text] [Related]
8. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. Pereira JH; Heins RA; Gall DL; McAndrew RP; Deng K; Holland KC; Donohue TJ; Noguera DR; Simmons BA; Sale KL; Ralph J; Adams PD J Biol Chem; 2016 May; 291(19):10228-38. PubMed ID: 26940872 [TBL] [Abstract][Full Text] [Related]
9. Roles of the enantioselective glutathione S-transferases in cleavage of beta-aryl ether. Masai E; Ichimura A; Sato Y; Miyauchi K; Katayama Y; Fukuda M J Bacteriol; 2003 Mar; 185(6):1768-75. PubMed ID: 12618439 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the third glutathione S-transferase gene involved in enantioselective cleavage of the β-aryl ether by Sphingobium sp. strain SYK-6. Tanamura K; Abe T; Kamimura N; Kasai D; Hishiyama S; Otsuka Y; Nakamura M; Kajita S; Katayama Y; Fukuda M; Masai E Biosci Biotechnol Biochem; 2011; 75(12):2404-7. PubMed ID: 22146726 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Mechanism of Aryl-Ether Bond Cleavage in Lignin by LigF and LigG. Prates ET; Crowley MF; Skaf MS; Beckham GT J Phys Chem B; 2019 Dec; 123(48):10142-10151. PubMed ID: 31687816 [TBL] [Abstract][Full Text] [Related]
12. Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin. Higuchi Y; Aoki S; Takenami H; Kamimura N; Takahashi K; Hishiyama S; Lancefield CS; Ojo OS; Katayama Y; Westwood NJ; Masai E Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374031 [No Abstract] [Full Text] [Related]
13. Whole-cell cascade for the preparation of enantiopure β-O-4 aryl ether compounds with glutathione recycling. Husarcikova J; Schallmey A J Biotechnol; 2019 Mar; 293():1-7. PubMed ID: 30703467 [TBL] [Abstract][Full Text] [Related]
14. From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers. Picart P; Müller C; Mottweiler J; Wiermans L; Bolm C; Domínguez de María P; Schallmey A ChemSusChem; 2014 Nov; 7(11):3164-71. PubMed ID: 25186983 [TBL] [Abstract][Full Text] [Related]
15. Development of a rapid assay for β-etherase activity using a novel chromogenic substrate. Romero-Soto IC; Rodríguez JA; Armenta-Pérez VP; Martínez-Pérez RB; Camacho-Ruiz RM; Alencar Menezes LR; Sassaki GL; Santana-Filho A; Camacho-Ruiz MA Talanta; 2024 Apr; 270():125501. PubMed ID: 38091749 [TBL] [Abstract][Full Text] [Related]
16. Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers. Ohta Y; Nishi S; Hasegawa R; Hatada Y Sci Rep; 2015 Oct; 5():15105. PubMed ID: 26477321 [TBL] [Abstract][Full Text] [Related]
17. Effect of sulfonated lignin on enzymatic activity of the ligninolytic enzymes Cα-dehydrogenase LigD and β-etherase LigF. Wang C; Ouyang X; Su S; Liang X; Zhang C; Wang W; Yuan Q; Li Q Enzyme Microb Technol; 2016 Nov; 93-94():59-69. PubMed ID: 27702486 [TBL] [Abstract][Full Text] [Related]
18. Database Mining for Novel Bacterial β-Etherases, Glutathione-Dependent Lignin-Degrading Enzymes. Voß H; Heck CA; Schallmey M; Schallmey A Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676477 [TBL] [Abstract][Full Text] [Related]
19. A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily. Masai E; Katayama Y; Kubota S; Kawai S; Yamasaki M; Morohoshi N FEBS Lett; 1993 May; 323(1-2):135-40. PubMed ID: 8495726 [TBL] [Abstract][Full Text] [Related]
20. Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-beta-aryl ether by Sphingobium sp. strain SYK-6. Sato Y; Moriuchi H; Hishiyama S; Otsuka Y; Oshima K; Kasai D; Nakamura M; Ohara S; Katayama Y; Fukuda M; Masai E Appl Environ Microbiol; 2009 Aug; 75(16):5195-201. PubMed ID: 19542348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]