BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 25233143)

  • 1. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.
    Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T
    Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils.
    Zhang B; Lee WH; Piner R; Kholmanov I; Wu Y; Li H; Ji H; Ruoff RS
    ACS Nano; 2012 Mar; 6(3):2471-6. PubMed ID: 22339048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.
    Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B
    ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth.
    Tsai LW; Tai NH
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniformity of large-area bilayer graphene grown by chemical vapor deposition.
    Sheng Y; Rong Y; He Z; Fan Y; Warner JH
    Nanotechnology; 2015 Oct; 26(39):395601. PubMed ID: 26349521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene.
    Wu Y; Hao Y; Fu M; Jiang W; Wu Q; Thrower PA; Piner RD; Ke C; Wu Z; Kang J; Ruoff RS
    Nanoscale; 2016 Jan; 8(2):930-7. PubMed ID: 26660490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of post-annealing on the plasma etching of graphene-coated-copper.
    Hui LS; Whiteway E; Hilke M; Turak A
    Faraday Discuss; 2014; 173():79-93. PubMed ID: 25465275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the synthesis of wafer-scale single-crystal graphene on copper foils.
    Yan Z; Lin J; Peng Z; Sun Z; Zhu Y; Li L; Xiang C; Samuel EL; Kittrell C; Tour JM
    ACS Nano; 2012 Oct; 6(10):9110-7. PubMed ID: 22966902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and transport properties of the interface between CVD-grown graphene domains.
    Ogawa Y; Komatsu K; Kawahara K; Tsuji M; Tsukagoshi K; Ago H
    Nanoscale; 2014 Jul; 6(13):7288-94. PubMed ID: 24847777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica.
    Qi JL; Nagashio K; Nishimura T; Toriumi A
    Nanotechnology; 2014 May; 25(18):185602. PubMed ID: 24739680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating.
    Huh JH; Kim SH; Chu JH; Kim SY; Kim JH; Kwon SY
    Nanoscale; 2014 Apr; 6(8):4379-86. PubMed ID: 24632835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of copper thin film loss during graphene synthesis.
    Lee AL; Tao L; Akinwande D
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1527-32. PubMed ID: 25552194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.