These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25233273)

  • 1. In situ study of noncatalytic metal oxide nanowire growth.
    Rackauskas S; Jiang H; Wagner JB; Shandakov SD; Hansen TW; Kauppinen EI; Nasibulin AG
    Nano Lett; 2014 Oct; 14(10):5810-3. PubMed ID: 25233273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale Observation of Vapor-Solid Nanowire Growth via Oscillatory Mass Transport.
    Zhang Z; Wang Y; Li H; Yuan W; Zhang X; Sun C; Zhang Z
    ACS Nano; 2016 Jan; 10(1):763-9. PubMed ID: 26645527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Investigation of Defect-Free Copper Nanowire Growth.
    Lin TY; Chen YL; Chang CF; Huang GM; Huang CW; Hsieh CY; Lo YC; Lu KC; Wu WW; Chen LJ
    Nano Lett; 2018 Feb; 18(2):778-784. PubMed ID: 29369633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Step Flow on a Nanofacet.
    Harmand JC; Patriarche G; Glas F; Panciera F; Florea I; Maurice JL; Travers L; Ollivier Y
    Phys Rev Lett; 2018 Oct; 121(16):166101. PubMed ID: 30387660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ TEM Observation of Crystal Structure Transformation in InAs Nanowires on Atomic Scale.
    Zhang Z; Liu N; Li L; Su J; Chen PP; Lu W; Gao Y; Zou J
    Nano Lett; 2018 Oct; 18(10):6597-6603. PubMed ID: 30234307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of the Layer-by-Layer Growth of ZnO Nanopillar by In situ High Resolution Transmission Electron Microscopy.
    Li X; Cheng S; Deng S; Wei X; Zhu J; Chen Q
    Sci Rep; 2017 Jan; 7():40911. PubMed ID: 28098261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twin plane re-entrant mechanism for catalytic nanowire growth.
    Gamalski AD; Voorhees PW; Ducati C; Sharma R; Hofmann S
    Nano Lett; 2014 Mar; 14(3):1288-92. PubMed ID: 24527789
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Cheek Q; Fahrenkrug E; Hlynchuk S; Alsem DH; Salmon NJ; Maldonado S
    ACS Nano; 2020 Mar; 14(3):2869-2879. PubMed ID: 32083842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si.
    Chou YC; Wu WW; Cheng SL; Yoo BY; Myung N; Chen LJ; Tu KN
    Nano Lett; 2008 Aug; 8(8):2194-9. PubMed ID: 18616326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ TEM observation of the vapor-solid-solid growth of <001[combining macron]> InAs nanowires.
    Sun Q; Pan D; Li M; Zhao J; Chen P; Lu W; Zou J
    Nanoscale; 2020 Jun; 12(21):11711-11717. PubMed ID: 32452500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-nucleation evolution of the liquid-solid interface in nanowire growth.
    Maliakkal CB; Jacobsson D; Tornberg M; Dick KA
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34847548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dislocation-induced nanoparticle decoration on a GaN nanowire.
    Yang B; Yuan F; Liu Q; Huang N; Qiu J; Staedler T; Liu B; Jiang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2790-6. PubMed ID: 25562572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors.
    Xu L; Li X; Zhan Z; Wang L; Feng S; Chai X; Lu W; Shen J; Weng Z; Sun J
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20264-71. PubMed ID: 26308593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent Control of Nucleation and Layer Growth in Nanowires.
    Maliakkal CB; Mårtensson EK; Tornberg MU; Jacobsson D; Persson AR; Johansson J; Wallenberg LR; Dick KA
    ACS Nano; 2020 Apr; 14(4):3868-3875. PubMed ID: 32049491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution Electron Tomography of Ultrathin Boerdijk-Coxeter-Bernal Nanowire Enabled by Superthin Metal Surface Coating.
    Song X; Zhang X; Chang Q; Yao X; Li M; Zhang R; Liu X; Song C; Ng YXA; Ang EH; Ou Z
    Small; 2022 Oct; 18(41):e2203310. PubMed ID: 36084232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system.
    Geaney H; Mullane E; Ramasse QM; Ryan KM
    Nano Lett; 2013 Apr; 13(4):1675-80. PubMed ID: 23517564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ TEM observation of a microcrucible mechanism of nanowire growth.
    Boston R; Schnepp Z; Nemoto Y; Sakka Y; Hall SR
    Science; 2014 May; 344(6184):623-6. PubMed ID: 24812400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching.
    Chun DW; Kim TK; Choi D; Caldwell E; Kim YJ; Paik JC; Jin S; Chen R
    Nanotechnology; 2016 Nov; 27(45):455302. PubMed ID: 27713182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-Scale Mechanism of Unidirectional Oxide Growth.
    Sun X; Zhu W; Wu D; Liu Z; Chen X; Yuan L; Wang G; Sharma R; Zhou G
    Adv Funct Mater; 2019; 30(4):. PubMed ID: 33029110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment.
    Ma Y; Gao W; Shan H; Chen W; Shang W; Tao P; Song C; Addiego C; Deng T; Pan X; Wu J
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29052926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.