These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25233343)

  • 1. The tandem repeats enabling reversible switching between the two phases of β-lactamase substrate spectrum.
    Yi H; Song H; Hwang J; Kim K; Nierman WC; Kim HS
    PLoS Genet; 2014 Sep; 10(9):e1004640. PubMed ID: 25233343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL.
    Yi H; Choi JM; Hwang J; Prati F; Cao TP; Lee SH; Kim HS
    Sci Rep; 2016 Nov; 6():36527. PubMed ID: 27827433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.
    Petrosino JF; Palzkill T
    J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel ceftazidime-hydrolysing extended-spectrum beta-lactamase, CTX-M-54, with a single amino acid substitution at position 167 in the omega loop.
    Bae IK; Lee BH; Hwang HY; Jeong SH; Hong SG; Chang CL; Kwak HS; Kim HJ; Youn H
    J Antimicrob Chemother; 2006 Aug; 58(2):315-9. PubMed ID: 16785225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel plasmid-encoded ceftazidime-hydrolyzing CTX-M-53 extended-spectrum beta-lactamase from Salmonella enterica serotypes Westhampton and Senftenberg.
    Doublet B; Granier SA; Robin F; Bonnet R; Fabre L; Brisabois A; Cloeckaert A; Weill FX
    Antimicrob Agents Chemother; 2009 May; 53(5):1944-51. PubMed ID: 19273683
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Barnes MD; Winkler ML; Taracila MA; Page MG; Desarbre E; Kreiswirth BN; Shields RK; Nguyen MH; Clancy C; Spellberg B; Papp-Wallace KM; Bonomo RA
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of tandem repeats found in 44 prokaryotic genomes.
    Mizuta S; Munakata H; Aimaiti A; Oya I; Oosawa K; Shimizu T
    In Silico Biol; 2006; 6(1-2):147-59. PubMed ID: 17009421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceftazidime-hydrolysing β-lactamase OXA-145 with impaired hydrolysis of penicillins in Pseudomonas aeruginosa.
    Hocquet D; Colomb M; Dehecq B; Belmonte O; Courvalin P; Plésiat P; Meziane-Cherif D
    J Antimicrob Chemother; 2011 Aug; 66(8):1745-50. PubMed ID: 21665906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Role of the Ω-Loop in the Evolution of Ceftazidime Resistance in the PenA β-Lactamase from Burkholderia multivorans, an Important Cystic Fibrosis Pathogen.
    Papp-Wallace KM; Becka SA; Taracila MA; Zeiser ET; Gatta JA; LiPuma JJ; Bonomo RA
    Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27872073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E240V substitution increases catalytic efficiency toward ceftazidime in a new natural TEM-type extended-spectrum beta-lactamase, TEM-149, from Enterobacter aerogenes and Serratia marcescens clinical isolates.
    Perilli M; Celenza G; De Santis F; Pellegrini C; Forcella C; Rossolini GM; Stefani S; Amicosante G
    Antimicrob Agents Chemother; 2008 Mar; 52(3):915-9. PubMed ID: 18160520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of a class C beta-lactamase extending its substrate specificity.
    Nukaga M; Haruta S; Tanimoto K; Kogure K; Taniguchi K; Tamaki M; Sawai T
    J Biol Chem; 1995 Mar; 270(11):5729-35. PubMed ID: 7890700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OXY-2-15, a novel variant showing increased ceftazidime hydrolytic activity.
    Nijhuis RH; Oueslati S; Zhou K; Bosboom RW; Rossen JW; Naas T
    J Antimicrob Chemother; 2015 May; 70(5):1429-33. PubMed ID: 25630648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate.
    Bradford PA; Cherubin CE; Idemyor V; Rasmussen BA; Bush K
    Antimicrob Agents Chemother; 1994 Apr; 38(4):761-6. PubMed ID: 8031043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SHV-16, a beta-lactamase with a pentapeptide duplication in the omega loop.
    Arpin C; Labia R; Andre C; Frigo C; El Harrif Z; Quentin C
    Antimicrob Agents Chemother; 2001 Sep; 45(9):2480-5. PubMed ID: 11502518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum.
    Voha C; Docquier JD; Rossolini GM; Fosse T
    Antimicrob Agents Chemother; 2006 Aug; 50(8):2673-9. PubMed ID: 16870757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase.
    Palzkill T; Le QQ; Venkatachalam KV; LaRocco M; Ocera H
    Mol Microbiol; 1994 Apr; 12(2):217-29. PubMed ID: 8057847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data.
    Berglund F; Marathe NP; Österlund T; Bengtsson-Palme J; Kotsakis S; Flach CF; Larsson DGJ; Kristiansson E
    Microbiome; 2017 Oct; 5(1):134. PubMed ID: 29020980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis.
    Stojanoski V; Chow DC; Hu L; Sankaran B; Gilbert HF; Prasad BV; Palzkill T
    J Biol Chem; 2015 Apr; 290(16):10382-94. PubMed ID: 25713062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and genetic characteristics of TEM-29B, a novel extended spectrum beta-lactamase.
    Bou G; Martínez-Beltrán J; Cerveró G; Pérez-Díaz JC
    FEMS Microbiol Lett; 1999 May; 174(1):185-90. PubMed ID: 10234838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burkholderia pseudomallei acquired ceftazidime resistance due to gene duplication and amplification.
    Chirakul S; Somprasong N; Norris MH; Wuthiekanun V; Chantratita N; Tuanyok A; Schweizer HP
    Int J Antimicrob Agents; 2019 May; 53(5):582-588. PubMed ID: 30639528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.