These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2523391)

  • 1. Measurement of the reversibility of ATP binding to myosin in calcium-activated skinned fibers from rabbit skeletal muscle. Oxygen exchange between water and ATP released to the solution.
    Bowater R; Webb MR; Ferenczi MA
    J Biol Chem; 1989 May; 264(13):7193-201. PubMed ID: 2523391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of ATP and inorganic phosphate release during hydrolysis of ATP by rabbit skeletal actomyosin subfragment 1. Oxygen exchange between water and ATP or phosphate.
    Bowater R; Zimmerman RW; Webb MR
    J Biol Chem; 1990 Jan; 265(1):171-6. PubMed ID: 2136736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state.
    Webb MR; Hibberd MG; Goldman YE; Trentham DR
    J Biol Chem; 1986 Nov; 261(33):15557-64. PubMed ID: 2946675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen exchange between phosphate and water accompanies calcium-regulated ATPase activity of skinned fibers from rabbit skeletal muscle.
    Hibberd MG; Webb MR; Goldman YE; Trentham DR
    J Biol Chem; 1985 Mar; 260(6):3496-500. PubMed ID: 3156135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of ATP hydrolysis catalyzed by myosin and actomyosin, using rapid reaction techniques to study oxygen exchange.
    Webb MR; Trentham DR
    J Biol Chem; 1981 Nov; 256(21):10910-6. PubMed ID: 7287741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers.
    Schoenberg M
    Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demembranated muscle fibers catalyze a more rapid exchange between phosphate and adenosine triphosphate than actomyosin subfragment 1.
    Bowater R; Sleep J
    Biochemistry; 1988 Jul; 27(14):5314-23. PubMed ID: 3167048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of ATP release and Pi binding during the ATPase cycle of lethocerus flight muscle fibres, using phosphate-water oxygen exchange.
    Webb MR; Lund J; Hunter JL; White DC
    J Muscle Res Cell Motil; 1991 Jun; 12(3):254-61. PubMed ID: 1831462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate oxygen exchange catalyzed by the actin-activated skeletal myosin adenosinetriphosphatase.
    Evans JA; Eisenberg E
    Biochemistry; 1989 Sep; 28(19):7741-7. PubMed ID: 2532933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-exchange studies on the pathways for magnesium adenosine 5'-triphosphate hydrolysis by actomyosin.
    Shukla KK; Levy HM; Ramirez F; Marecek JF; McKeever B; Margossian SS
    Biochemistry; 1983 Sep; 22(20):4822-30. PubMed ID: 6354267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle.
    Kawai M; Halvorson HR
    Biophys J; 1991 Feb; 59(2):329-42. PubMed ID: 2009356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of binding and hydrolysis of a series of nucleoside triphosphates by actomyosin-S1. Relationship between solution rate constants and properties of muscle fibers.
    White HD; Belknap B; Jiang W
    J Biol Chem; 1993 May; 268(14):10039-45. PubMed ID: 8486675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. Elementary steps affected by the spacing change.
    Zhao Y; Kawai M
    Biophys J; 1993 Jan; 64(1):197-210. PubMed ID: 7679297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen exchange reaction during ATP hydrolysis by glycerinated muscle fibers, myofibrils, and synthetic actomyosin filaments.
    Yasui M; Ohe M; Kajita A; Arata T; Inoue A
    J Biochem; 1989 Apr; 105(4):644-7. PubMed ID: 2527230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of actomyosin ATPase from fast muscle.
    Midelfort CF
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2067-71. PubMed ID: 6454140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1988 Apr; 263(12):5505-11. PubMed ID: 2965703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate burst in permeable muscle fibers of the rabbit.
    Ferenczi MA
    Biophys J; 1986 Sep; 50(3):471-7. PubMed ID: 3756298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.
    Kawai M; Zhao Y
    Biophys J; 1993 Aug; 65(2):638-51. PubMed ID: 8218893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.