BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25234135)

  • 1. Static and dynamic properties of 1,1'-bi-2-naphthol and its conjugated acids and bases.
    Alkorta I; Cancedda C; Cocinero EJ; Dávalos JZ; Ecija P; Elguero J; González J; Lesarri A; Ramos R; Reviriego F; Roussel C; Uriarte I; Vanthuyne N
    Chemistry; 2014 Nov; 20(45):14816-25. PubMed ID: 25234135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonation Behavior of 1,1'-Bi-2-naphthol and Insights into Its Acid-Catalyzed Atropisomerization.
    Genaev AM; Salnikov GE; Shernyukov AV; Zhu Z; Koltunov KY
    Org Lett; 2017 Feb; 19(3):532-535. PubMed ID: 28094529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the mechanism of the asymmetric propargylation of aldehydes promoted by 1,1'-bi-2-naphthol-derived catalysts.
    Grayson MN; Goodman JM
    J Am Chem Soc; 2013 Apr; 135(16):6142-8. PubMed ID: 23517191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lewis acid catalysis and ligand exchange in the asymmetric binaphthol-catalyzed propargylation of ketones.
    Grayson MN; Goodman JM
    J Org Chem; 2013 Sep; 78(17):8796-801. PubMed ID: 23947430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the acidity and reactivity of highly effective chiral Brønsted acid catalysts: establishment of an acidity scale.
    Kaupmees K; Tolstoluzhsky N; Raja S; Rueping M; Leito I
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11569-72. PubMed ID: 24039083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent BINOL-based sensor for thorium recognition and a density functional theory investigation.
    Wen J; Dong L; Tian J; Jiang T; Yang YQ; Huang Z; Yu XQ; Hu CW; Hu S; Yang TZ; Wang XL
    J Hazard Mater; 2013 Dec; 263 Pt 2():638-42. PubMed ID: 24225589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diastereomeric resolution of rac-1,1'-bi-2-naphthol boronic acid with a chiral boron ligand and its application to simultaneous synthesis of (R)- and (S)-3,3'-disubstituted 1,1'-bi-2-naphthol derivatives.
    Lee CY; Cheon CH
    J Org Chem; 2013 Jul; 78(14):7086-92. PubMed ID: 23786156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protic anions [H(B12X12)]- (X = F, Cl, Br, I) that act as Brønsted acids in the gas phase.
    Jenne C; Keßler M; Warneke J
    Chemistry; 2015 Apr; 21(15):5887-91. PubMed ID: 25735766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gas phase structure of ethynylferrocene using microwave spectroscopy.
    Subramanian R; Karunatilaka C; Keck KS; Kukolich SG
    Inorg Chem; 2005 May; 44(9):3137-45. PubMed ID: 15847419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naphthol coupling monitored by infrared spectroscopy in the gas phase.
    Roithová J; Milko P
    J Am Chem Soc; 2010 Jan; 132(1):281-8. PubMed ID: 19954233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study.
    Yang J; Janik MJ; Ma D; Zheng A; Zhang M; Neurock M; Davis RJ; Ye C; Deng F
    J Am Chem Soc; 2005 Dec; 127(51):18274-80. PubMed ID: 16366582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and magnetic resonance properties of Sc3C2@C80 and its monoanion.
    Taubert S; Straka M; Pennanen TO; Sundholm D; Vaara J
    Phys Chem Chem Phys; 2008 Dec; 10(47):7158-68. PubMed ID: 19039350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution, enantiomerization kinetics, and chiroptical properties of 7,7'-dihydroxy-8,8'-biquinolyl.
    Blakemore PR; Kilner C; Milicevic SD
    J Org Chem; 2006 Oct; 71(21):8212-8. PubMed ID: 17025314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chelate Effect Rationalizes Observed Rate Acceleration and Enantioselectivity in BINOL-Catalyzed Petasis Reactions.
    Haeffner F; Pickel TC; Hou A; Walker DG; Kiesman WF; Shi X
    Chemistry; 2023 Mar; 29(13):e202203331. PubMed ID: 36495400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-Catalyzed Versus Thermally Induced C1-C1' Bond Cleavage in 1,1'-Bi-2-naphthol: An Experimental and Theoretical Study.
    Genaev AM; Shchegoleva LN; Salnikov GE; Shernyukov AV; Shundrin LA; Shundrina IK; Zhu Z; Koltunov KY
    J Org Chem; 2019 Jun; 84(11):7238-7243. PubMed ID: 31083942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral self-dimerization of vanadium complexes on a SiO2 surface for asymmetric catalytic coupling of 2-naphthol: structure, performance, and mechanism.
    Tada M; Kojima N; Izumi Y; Taniike T; Iwasawa Y
    J Phys Chem B; 2005 May; 109(20):9905-16. PubMed ID: 16852198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantiomeric discrimination of 1,1'-binaphthol by room temperature phosphorimetry using gamma-cyclodextrin as chiral selector.
    Zhang XH; Wang Y; Jin WJ
    Anal Chim Acta; 2008 Aug; 622(1-2):157-62. PubMed ID: 18602547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic investigation of superelectrophilic activation of 1,1'-bi-2-naphthols in the presence of aluminum halides.
    Zhu Z; Genaev AM; Salnikov GE; Koltunov KY
    Org Biomol Chem; 2019 Apr; 17(16):3971-3977. PubMed ID: 30942805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.