These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 25234276)
1. Short-term cortical plasticity associated with feedback-error learning after locomotor training in a patient with incomplete spinal cord injury. Chisholm AE; Peters S; Borich MR; Boyd LA; Lam T Phys Ther; 2015 Feb; 95(2):257-66. PubMed ID: 25234276 [TBL] [Abstract][Full Text] [Related]
2. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury. Roy FD; Yang JF; Gorassini MA J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733 [TBL] [Abstract][Full Text] [Related]
3. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. Urbin MA; Ozdemir RA; Tazoe T; Perez MA J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994 [TBL] [Abstract][Full Text] [Related]
4. Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury. Thompson AK; Cote RH; Sniffen JM; Brangaccio JA J Neurophysiol; 2018 Dec; 120(6):2745-2760. PubMed ID: 30207863 [TBL] [Abstract][Full Text] [Related]
5. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Jo HJ; Perez MA Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959 [TBL] [Abstract][Full Text] [Related]
6. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. Thomas SL; Gorassini MA J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519 [TBL] [Abstract][Full Text] [Related]
7. Cortical and spinal excitability changes after robotic gait training in healthy participants. Blicher JU; Nielsen JF Neurorehabil Neural Repair; 2009 Feb; 23(2):143-9. PubMed ID: 19047360 [TBL] [Abstract][Full Text] [Related]
8. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation. Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359 [TBL] [Abstract][Full Text] [Related]
9. Modified ischaemic nerve block of the forearm: use for the induction of cortical plasticity in distal hand muscles. Hayashi R; Ogata K; Nakazono H; Tobimatsu S J Physiol; 2019 Jul; 597(13):3457-3471. PubMed ID: 31111966 [TBL] [Abstract][Full Text] [Related]
10. Corticospinal reorganization after locomotor training in a person with motor incomplete paraplegia. Hajela N; Mummidisetty CK; Smith AC; Knikou M Biomed Res Int; 2013; 2013():516427. PubMed ID: 23484130 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation. Benavides FD; Santamaria AJ; Bodoukhin N; Guada LG; Solano JP; Guest JD J Neurotrauma; 2017 Sep; 34(18):2595-2608. PubMed ID: 27251314 [TBL] [Abstract][Full Text] [Related]
12. A novel cortical target to enhance hand motor output in humans with spinal cord injury. Long J; Federico P; Perez MA Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131 [TBL] [Abstract][Full Text] [Related]
13. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. Sczesny-Kaiser M; Höffken O; Aach M; Cruciger O; Grasmücke D; Meindl R; Schildhauer TA; Schwenkreis P; Tegenthoff M J Neuroeng Rehabil; 2015 Aug; 12():68. PubMed ID: 26289818 [TBL] [Abstract][Full Text] [Related]
14. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Knikou M Exp Brain Res; 2013 Jul; 228(3):279-96. PubMed ID: 23708757 [TBL] [Abstract][Full Text] [Related]
16. Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study. Marufa SA; Hsieh TH; Liou JC; Chen HY; Peng CW PLoS One; 2021; 16(6):e0252965. PubMed ID: 34086836 [TBL] [Abstract][Full Text] [Related]
17. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723 [TBL] [Abstract][Full Text] [Related]
18. The physiological basis of neurorehabilitation--locomotor training after spinal cord injury. Hubli M; Dietz V J Neuroeng Rehabil; 2013 Jan; 10():5. PubMed ID: 23336934 [TBL] [Abstract][Full Text] [Related]
19. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury. Zewdie ET; Roy FD; Yang JF; Gorassini MA Prog Brain Res; 2015; 218():127-55. PubMed ID: 25890135 [TBL] [Abstract][Full Text] [Related]
20. Differences in brain structure and theta burst stimulation-induced plasticity implicate the corticomotor system in loss of function after musculoskeletal injury. Flanagan SD; Proessl F; Dunn-Lewis C; Sterczala AJ; Connaboy C; Canino MC; Beethe AZ; Eagle SR; Szivak TK; Onate JA; Volek JS; Maresh CM; Kaeding CC; Kraemer WJ J Neurophysiol; 2021 Apr; 125(4):1006-1021. PubMed ID: 33596734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]