These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25234343)

  • 41. [Effect of calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint].
    Chen Y; Yu G; Ding Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Mar; 21(3):255-8. PubMed ID: 17419204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints--Part I: Kinematics.
    Siegler S; Chen J; Schneck CD
    J Biomech Eng; 1988 Nov; 110(4):364-73. PubMed ID: 3205022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transmissions within the tarsal gearbox.
    Wolf P; Stacoff A; Luechinger R; Boesiger P; Stuessi E
    J Am Podiatr Med Assoc; 2008; 98(1):45-50. PubMed ID: 18202334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of in vivo 3-D internal kinematics of the joints of the foot.
    Udupa JK; Hirsch BE; Hillstrom HJ; Bauer GR; Kneeland JB
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1387-96. PubMed ID: 9805837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multisegment Foot Kinematic and Kinetic Compensations in Level and Uphill Walking Following Tibiotalar Arthrodesis.
    Bruening DA; Cooney TE; Ray MS; Daut GA; Cooney KM; Galey SM
    Foot Ankle Int; 2016 Oct; 37(10):1119-1129. PubMed ID: 27354397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of variations in calcaneocuboid fusion technique on kinematics of the normal hindfoot.
    Sands A; Early J; Harrington RM; Tencer AF; Ching RP; Sangeorzan BJ
    Foot Ankle Int; 1998 Jan; 19(1):19-25. PubMed ID: 9462908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of plantar fasciotomy on stability of arch of foot.
    Kitaoka HB; Luo ZP; An KN
    Clin Orthop Relat Res; 1997 Nov; (344):307-12. PubMed ID: 9372782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stiffness of the human foot and evolution of the transverse arch.
    Venkadesan M; Yawar A; Eng CM; Dias MA; Singh DK; Tommasini SM; Haims AH; Bandi MM; Mandre S
    Nature; 2020 Mar; 579(7797):97-100. PubMed ID: 32103182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking.
    Scott SH; Winter DA
    J Biomech; 1993 Sep; 26(9):1091-1104. PubMed ID: 8408091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro study of foot bone kinematics via a custom-made cadaveric gait simulator.
    Zhu G; Wang Z; Yuan C; Geng X; Yu J; Zhang C; Huang J; Wang X; Ma X
    J Orthop Surg Res; 2020 Aug; 15(1):346. PubMed ID: 32838808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An anatomically based protocol for the description of foot segment kinematics during gait.
    Leardini A; Benedetti MG; Catani F; Simoncini L; Giannini S
    Clin Biomech (Bristol); 1999 Oct; 14(8):528-36. PubMed ID: 10521637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro determination of midfoot motion.
    Ouzounian TJ; Shereff MJ
    Foot Ankle; 1989 Dec; 10(3):140-6. PubMed ID: 2613125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of foot orthoses on foot mobility magnitude and arch height index in adults with flexible flat feet.
    Sheykhi-Dolagh R; Saeedi H; Farahmand B; Kamyab M; Kamali M; Gholizadeh H; Derayatifar AA; Curran S
    Prosthet Orthot Int; 2015 Jun; 39(3):190-6. PubMed ID: 24604086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reliability of a Seven-Segment Foot Model with Medial and Lateral Midfoot and Forefoot Segments During Walking Gait.
    Cobb SC; Joshi MN; Pomeroy RL
    J Appl Biomech; 2016 Dec; 32(6):608-613. PubMed ID: 27684301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinematics reduction applied to the comparison of highly-pronated, normal and highly-supinated feet during walking.
    Sanchis-Sales E; Rodríguez-Cervantes PJ; Sancho-Bru JL
    Gait Posture; 2019 Feb; 68():269-273. PubMed ID: 30551052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinematics of the ankle/foot complex--Part 3: Influence of leg rotation.
    Lundberg A; Svensson OK; Bylund C; Selvik G
    Foot Ankle; 1989 Jun; 9(6):304-9. PubMed ID: 2744673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interpreting locomotor biomechanics from the morphology of human footprints.
    Hatala KG; Wunderlich RE; Dingwall HL; Richmond BG
    J Hum Evol; 2016 Jan; 90():38-48. PubMed ID: 26767958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intrinsic foot kinematics measured in vivo during the stance phase of slow running.
    Arndt A; Wolf P; Liu A; Nester C; Stacoff A; Jones R; Lundgren P; Lundberg A
    J Biomech; 2007; 40(12):2672-8. PubMed ID: 17368465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trabecular architecture in the StW 352 fossil hominin calcaneus.
    Zeininger A; Patel BA; Zipfel B; Carlson KJ
    J Hum Evol; 2016 Aug; 97():145-58. PubMed ID: 27457551
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Midtarsal locking, the windlass mechanism, and running strike pattern: A kinematic and kinetic assessment.
    Bruening DA; Pohl MB; Takahashi KZ; Barrios JA
    J Biomech; 2018 May; 73():185-191. PubMed ID: 29680311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.