BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25234428)

  • 1. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.
    Huang R; Wen YH; Zhu ZZ; Sun SG
    Phys Chem Chem Phys; 2016 Apr; 18(14):9847-54. PubMed ID: 27003035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions.
    Sun X; Li D; Ding Y; Zhu W; Guo S; Wang ZL; Sun S
    J Am Chem Soc; 2014 Apr; 136(15):5745-9. PubMed ID: 24650288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.
    Wen YH; Huang R; Shao GF; Sun SG
    J Phys Chem Lett; 2017 Sep; 8(17):4273-4278. PubMed ID: 28837772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloy Cu₃Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction.
    Han L; Liu H; Cui P; Peng Z; Zhang S; Yang J
    Sci Rep; 2014 Sep; 4():6414. PubMed ID: 25231376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Dealloying of Alloy Nanoparticles toward Optimization of Electrocatalysis on Spongy Metallic Nanoframes.
    Li GG; Villarreal E; Zhang Q; Zheng T; Zhu JJ; Wang H
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23920-31. PubMed ID: 27557567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic considerations and computer simulations on the formation of core-shell nanoparticles under electrochemical conditions.
    Oviedo OA; Leiva EP; Mariscal MM
    Phys Chem Chem Phys; 2008 Jun; 10(24):3561-8. PubMed ID: 18548162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pt-Sn alloy shells with tunable composition and structure on Au nanoparticles for boosting ethanol oxidation.
    Qian N; Ji L; Li X; Huang J; Li J; Wu X; Yang D; Zhang H
    Front Chem; 2022; 10():993894. PubMed ID: 36110140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance.
    Kang SW; Lee YW; Park Y; Choi BS; Hong JW; Park KH; Han SW
    ACS Nano; 2013 Sep; 7(9):7945-55. PubMed ID: 23915173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies.
    Wu ZP; Shan S; Zang SQ; Zhong CJ
    Acc Chem Res; 2020 Dec; 53(12):2913-2924. PubMed ID: 33170638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Stability and Melting Dynamics of Bimetallic Au@Pt@Au Core-Shell Nanoparticles.
    Borysiuk V; Lyashenko IA; Popov VL
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies.
    Akbarzadeh H; Mehrjouei E; Abbaspour M; Shamkhali AN
    Top Curr Chem (Cham); 2021 Apr; 379(3):22. PubMed ID: 33890199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine Control over the Compositional Structure of Trimetallic Core-Shell Nanocrystals for Enhanced Electrocatalysis.
    Lee YW; Ahn H; Lee SE; Woo H; Han SW
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25901-25908. PubMed ID: 31251023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of composition and architecture on the thermodynamic behavior of AuCu nanoparticles.
    Yang WH; Yu FQ; Huang R; Lin YX; Wen YH
    Nanoscale; 2024 Jun; ():. PubMed ID: 38916453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Cu@CuPt Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity.
    Wang Q; Zhao Z; Jia Y; Wang M; Qi W; Pang Y; Yi J; Zhang Y; Li Z; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36817-36827. PubMed ID: 28975789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured catalysts in fuel cells.
    Zhong CJ; Luo J; Fang B; Wanjala BN; Njoki PN; Loukrakpam R; Yin J
    Nanotechnology; 2010 Feb; 21(6):062001. PubMed ID: 20065536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.