These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25234428)

  • 41. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts.
    Hsieh YC; Zhang Y; Su D; Volkov V; Si R; Wu L; Zhu Y; An W; Liu P; He P; Ye S; Adzic RR; Wang JX
    Nat Commun; 2013; 4():2466. PubMed ID: 24045405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell.
    Wang L; Yamauchi Y
    J Am Chem Soc; 2010 Oct; 132(39):13636-8. PubMed ID: 20831169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ag/Au/Pt trimetallic nanoparticles with defects: preparation, characterization, and electrocatalytic activity in methanol oxidation.
    Thongthai K; Pakawanit P; Chanlek N; Kim JH; Ananta S; Srisombat L
    Nanotechnology; 2017 Sep; 28(37):375602. PubMed ID: 28782731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Au-Cu-M (M = Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction.
    Wang X; Chen S; Reggiano G; Thota S; Wang Y; Kerns P; Suib SL; Zhao J
    Chem Commun (Camb); 2019 Jan; 55(9):1249-1252. PubMed ID: 30632545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation.
    Park HY; Schadt MJ; Wang L; Lim II; Njoki PN; Kim SH; Jang MY; Luo J; Zhong CJ
    Langmuir; 2007 Aug; 23(17):9050-6. PubMed ID: 17629315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heterogeneous junction engineering on core-shell nanocatalysts boosts the dye-sensitized solar cell.
    Wu CY; Liu YT; Huang PC; Luo TJ; Lee CH; Yang YW; Wen TC; Chen TY; Lin TL
    Nanoscale; 2013 Oct; 5(19):9181-92. PubMed ID: 23929127
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells.
    Zhang X; Yu S; Qiao L; Zheng W; Liu P
    J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoparticle metamorphosis: an in situ high-temperature transmission electron microscopy study of the structural evolution of heterogeneous Au:Fe2O3 nanoparticles.
    Baumgardner WJ; Yu Y; Hovden R; Honrao S; Hennig RG; Abruña HD; Muller D; Hanrath T
    ACS Nano; 2014 May; 8(5):5315-22. PubMed ID: 24758698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-Pot Fabrication of Mesoporous Core-Shell Au@PtNi Ternary Metallic Nanoparticles and Their Enhanced Efficiency for Oxygen Reduction Reaction.
    Shi Q; Zhu C; Fu S; Du D; Lin Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4739-44. PubMed ID: 26820165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.
    Shang L; Jin L; Guo S; Zhai J; Dong S
    Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single Step Laser-Induced Deposition of Plasmonic Au, Ag, Pt Mono-, Bi- and Tri-Metallic Nanoparticles.
    Mamonova DV; Vasileva AA; Petrov YV; Koroleva AV; Danilov DV; Kolesnikov IE; Bikbaeva GI; Bachmann J; Manshina AA
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis.
    Germano LD; Marangoni VS; Mogili NVV; Seixas L; Maroneze CM
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5661-5667. PubMed ID: 30694046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.
    Roshanghias A; Yakymovych A; Bernardi J; Ipser H
    Nanoscale; 2015 Mar; 7(13):5843-51. PubMed ID: 25757694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering the Composition and Structure of Bimetallic Au-Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting.
    Wang J; Zhu H; Yu D; Chen J; Chen J; Zhang M; Wang L; Du M
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19756-19765. PubMed ID: 28548842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metallurgy in a beaker: nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials.
    Schaak RE; Sra AK; Leonard BM; Cable RE; Bauer JC; Han YF; Means J; Teizer W; Vasquez Y; Funck ES
    J Am Chem Soc; 2005 Mar; 127(10):3506-15. PubMed ID: 15755172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Study on the synthesis of Pd/Au nanostructure and spectral characteristics of particle size composition and spins].
    Ren R; Xu J; Ren DN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1858-61. PubMed ID: 20827986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.
    Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM
    Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.