BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25234514)

  • 1. The lineshape of the electronic spectrum of the green fluorescent protein chromophore, part II: solution phase.
    Avila Ferrer FJ; Davari MD; Morozov D; Groenhof G; Santoro F
    Chemphyschem; 2014 Oct; 15(15):3246-57. PubMed ID: 25234514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lineshape of the electronic spectrum of the green fluorescent protein chromophore, part I: gas phase.
    Davari MD; Ferrer FJ; Morozov D; Santoro F; Groenhof G
    Chemphyschem; 2014 Oct; 15(15):3236-45. PubMed ID: 25178474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water.
    Zuehlsdorff TJ; Napoli JA; Milanese JM; Markland TE; Isborn CM
    J Chem Phys; 2018 Jul; 149(2):024107. PubMed ID: 30007372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
    Bravaya KB; Khrenova MG; Grigorenko BL; Nemukhin AV; Krylov AI
    J Phys Chem B; 2011 Jun; 115(25):8296-303. PubMed ID: 21591720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level Ab Initio Absorption Spectra Simulations of Neutral, Anionic and Neutral+ Chromophore of Green Fluorescence Protein Chromophore Models in Gas Phase and Solution.
    Georgieva I; Aquino AJA; Trendafilova N; Lischka H
    Photochem Photobiol; 2017 Nov; 93(6):1356-1367. PubMed ID: 28436037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and emission spectral shapes of a prototype dye in water by combining classical/dynamical and quantum/static approaches.
    Petrone A; Cerezo J; Ferrer FJ; Donati G; Improta R; Rega N; Santoro F
    J Phys Chem A; 2015 May; 119(21):5426-38. PubMed ID: 25699575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: Autodetachment versus internal conversion from the S1 state of the isolated GFP chromophore anion.
    West CW; Hudson AS; Cobb SL; Verlet JR
    J Chem Phys; 2013 Aug; 139(7):071104. PubMed ID: 23968065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the optical absorption of the anionic GFP chromophore in vacuum, solution, and protein.
    Petrone A; Caruso P; Tenuta S; Rega N
    Phys Chem Chem Phys; 2013 Dec; 15(47):20536-44. PubMed ID: 24177429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the decay coordinate of the green fluorescent protein: arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra.
    Stavrov SS; Solntsev KM; Tolbert LM; Huppert D
    J Am Chem Soc; 2006 Feb; 128(5):1540-6. PubMed ID: 16448124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of oxidation on the electronic structure of the green fluorescent protein chromophore.
    Epifanovsky E; Polyakov I; Grigorenko B; Nemukhin A; Krylov AI
    J Chem Phys; 2010 Mar; 132(11):115104. PubMed ID: 20331319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Looking at the Green Fluorescent Protein (GFP) chromophore from a different perspective: a computational insight.
    Paul BK; Guchhait N
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():295-303. PubMed ID: 23261626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues.
    Yang JS; Huang GJ; Liu YH; Peng SM
    Chem Commun (Camb); 2008 Mar; (11):1344-6. PubMed ID: 18389128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells.
    Cerezo J; Avila Ferrer FJ; Santoro F
    Phys Chem Chem Phys; 2015 May; 17(17):11401-11. PubMed ID: 25848730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore.
    Hsieh CC; Chou PT; Shih CW; Chuang WT; Chung MW; Lee J; Joo T
    J Am Chem Soc; 2011 Mar; 133(9):2932-43. PubMed ID: 21323314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hidden electronic excited state of enhanced green fluorescent protein.
    Hosoi H; Yamaguchi S; Mizuno H; Miyawaki A; Tahara T
    J Phys Chem B; 2008 Mar; 112(10):2761-3. PubMed ID: 18275187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling solvent effects on the electronic absorption spectra of TRITC fluorophore in solution: a theoretical TD-DFT/PCM study.
    Pedone A; Barone V
    Phys Chem Chem Phys; 2010 Mar; 12(11):2722-9. PubMed ID: 20200750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta and para effects in the ultrafast excited-state dynamics of the green fluorescent protein chromophores.
    Solntsev KM; Poizat O; Dong J; Rehault J; Lou Y; Burda C; Tolbert LM
    J Phys Chem B; 2008 Mar; 112(9):2700-11. PubMed ID: 18269276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum-chemical study.
    Altoe' P; Bernardi F; Garavelli M; Orlandi G; Negri F
    J Am Chem Soc; 2005 Mar; 127(11):3952-63. PubMed ID: 15771532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the photodetachment from the green fluorescent protein chromophore.
    Bravaya KB; Krylov AI
    J Phys Chem A; 2013 Nov; 117(46):11815-22. PubMed ID: 23662849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.