These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25234579)

  • 1. Enhanced catalytic and SERS activities of CTAB stabilized interconnected osmium nanoclusters.
    Ede SR; Nithiyanantham U; Kundu S
    Phys Chem Chem Phys; 2014 Nov; 16(41):22723-34. PubMed ID: 25234579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures.
    Kundu S; Dai W; Chen Y; Ma L; Yue Y; Sinyukov AM; Liang H
    J Colloid Interface Sci; 2017 Jul; 498():248-262. PubMed ID: 28342308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.
    Anantharaj S; Sakthikumar K; Elangovan A; Ravi G; Karthik T; Kundu S
    J Colloid Interface Sci; 2016 Dec; 483():360-373. PubMed ID: 27571687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of ultra-small Rh nanoparticles congregated over DNA for catalysis and SERS applications.
    Sangeetha K; Sankar SS; Karthick K; Anantharaj S; Ede SR; Wilson T S; Kundu S
    Colloids Surf B Biointerfaces; 2019 Jan; 173():249-257. PubMed ID: 30300831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds.
    Kundu S; Yi SI; Ma L; Chen Y; Dai W; Sinyukov AM; Liang H
    Dalton Trans; 2017 Jul; 46(29):9678-9691. PubMed ID: 28713887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of highly stable platinum organosols over DNA-scaffolds for enriched catalytic and SERS applications.
    Madhu R; Karmakar A; Karthick K; Kumaravel S; Sam Sankar S; Prajapati D; Kundu S
    Dalton Trans; 2021 Jun; 50(21):7198-7211. PubMed ID: 33899068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-mediated wirelike clusters of silver nanoparticles: an ultrasensitive SERS substrate.
    Majumdar D; Singha A; Mondal PK; Kundu S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7798-807. PubMed ID: 23895297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of self-assembled Ag nanoparticles on DNA chains with enhanced catalytic activity.
    Kundu S
    Phys Chem Chem Phys; 2013 Sep; 15(33):14107-19. PubMed ID: 23872921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type I collagen-mediated synthesis of noble metallic nanoparticles networks and the applications in Surface-Enhanced Raman Scattering and electrochemistry.
    Sun Y; Sun L; Zhang B; Xu F; Liu Z; Guo C; Zhang Y; Li Z
    Talanta; 2009 Aug; 79(3):562-9. PubMed ID: 19576413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved surface-enhanced Raman and catalytic activities of reduced graphene oxide-osmium hybrid nano thin films.
    Kavitha C; Bramhaiah K; John NS; Aggarwal S
    R Soc Open Sci; 2017 Sep; 4(9):170353. PubMed ID: 28989743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering-active Au/SiO2 nanocomposites prepared using sonoelectrochemical pulse deposition methods.
    Chang CC; Yang KH; Liu YC; Hsu TC; Mai FD
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4700-7. PubMed ID: 22934654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt3Te4 nanoparticles from tellurium nanowires.
    Samal AK; Pradeep T
    Langmuir; 2010 Dec; 26(24):19136-41. PubMed ID: 21114279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.
    Ren X; Tan E; Lang X; You T; Jiang L; Zhang H; Yin P; Guo L
    Phys Chem Chem Phys; 2013 Sep; 15(34):14196-201. PubMed ID: 23873410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone).
    Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H
    Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates.
    Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z
    Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.