These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25234768)

  • 1. Strong coupling and laser action of ladder-type oligo(p-phenylene)s in a microcavity.
    Höfner M; Kobin B; Hecht S; Henneberger F
    Chemphyschem; 2014 Dec; 15(17):3805-8. PubMed ID: 25234768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule.
    Holmes RJ; Forrest SR
    Phys Rev Lett; 2004 Oct; 93(18):186404. PubMed ID: 15525188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing.
    Suchomel H; Kreutzer S; Jörg M; Brodbeck S; Pieczarka M; Betzold S; Dietrich CP; Sęk G; Schneider C; Höfling S
    Opt Express; 2017 Oct; 25(20):24816-24826. PubMed ID: 29041294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity.
    Lu TC; Lai YY; Lan YP; Huang SW; Chen JR; Wu YC; Hsieh WF; Deng H
    Opt Express; 2012 Feb; 20(5):5530-7. PubMed ID: 22418359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode.
    Coles DM; Yang Y; Wang Y; Grant RT; Taylor RA; Saikin SK; Aspuru-Guzik A; Lidzey DG; Tang JK; Smith JM
    Nat Commun; 2014 Nov; 5():5561. PubMed ID: 25429787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates.
    Spano FC
    J Chem Phys; 2015 May; 142(18):184707. PubMed ID: 25978905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong coupling in a microcavity LED.
    Tischler JR; Bradley MS; Bulović V; Song JH; Nurmikko A
    Phys Rev Lett; 2005 Jul; 95(3):036401. PubMed ID: 16090759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s.
    Fan HH; Guo L; Li KF; Wong MS; Cheah KW
    J Am Chem Soc; 2012 May; 134(17):7297-300. PubMed ID: 22519510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong-coupling in inorganic-organic hybrid embedded single and coupled metallic microcavities.
    Pradeesh K; Prakash GV
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10715-9. PubMed ID: 22408980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures.
    Enomoto S; Tagami T; Ueda Y; Moriyama Y; Fujiwara K; Takahashi S; Yamashita K
    Light Sci Appl; 2022 Jan; 11(1):8. PubMed ID: 34974529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong bound exciton-photon coupling in ZnO whispering gallery microcavity.
    Sun L; Dong H; Xie W; Lu J; Chen Z; Shen X; Lu W
    Opt Express; 2013 Dec; 21(25):30227-32. PubMed ID: 24514601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong exciton-photon coupling in an organic single crystal microcavity.
    Kéna-Cohen S; Davanço M; Forrest SR
    Phys Rev Lett; 2008 Sep; 101(11):116401. PubMed ID: 18851303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid organic-inorganic polariton laser.
    Paschos GG; Somaschi N; Tsintzos SI; Coles D; Bricks JL; Hatzopoulos Z; Lidzey DG; Lagoudakis PG; Savvidis PG
    Sci Rep; 2017 Sep; 7(1):11377. PubMed ID: 28900206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of microcavity polaritons in ZnO nanoparticles.
    Liu X; Goldberg D; Menon VM
    Opt Express; 2013 Sep; 21(18):20620-5. PubMed ID: 24103934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Q planar organic-inorganic Perovskite-based microcavity.
    Han Z; Nguyen HS; Boitier F; Wei Y; Abdel-Baki K; Lauret JS; Bloch J; Bouchoule S; Deleporte E
    Opt Lett; 2012 Dec; 37(24):5061-3. PubMed ID: 23258005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.