These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25234768)

  • 21. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity.
    Heo J; Jahangir S; Xiao B; Bhattacharya P
    Nano Lett; 2013 Jun; 13(6):2376-80. PubMed ID: 23634649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser.
    Song Q; Liu L; Xiao S; Zhou X; Wang W; Xu L
    Phys Rev Lett; 2006 Jan; 96(3):033902. PubMed ID: 16486700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-mode strong coupling in Fabry-Pérot cavity-WS
    Zheng H; Bai Y; Zhang Q; Liu S
    Opt Express; 2023 Jul; 31(15):24976-24987. PubMed ID: 37475312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-gap polaritons in uniformly filled microcavities.
    Litinskaya M; Agranovich VM
    J Phys Condens Matter; 2009 Oct; 21(41):415301. PubMed ID: 21693982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks.
    Zhang C; Zhang F; Sun XW; Yang Y; Wang J; Xu J
    Opt Lett; 2009 Nov; 34(21):3349-51. PubMed ID: 19881590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong coupling in a microcavity containing β-carotene.
    Grant RT; Jayaprakash R; Coles DM; Musser A; De Liberato S; Samuel IDW; Turnbull GA; Clark J; Lidzey DG
    Opt Express; 2018 Feb; 26(3):3320-3327. PubMed ID: 29401861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong Coupling beyond the Light-Line.
    Menghrajani KS; Barnes WL
    ACS Photonics; 2020 Sep; 7(9):2448-2459. PubMed ID: 33163580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational Strong Light-Matter Coupling in an Open Microcavity Based on Reflective Germanium Coatings.
    Yitzhari R; Kapon O; Tischler YR
    J Phys Chem A; 2022 Feb; 126(7):1282-1288. PubMed ID: 35167287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative evaluation of light-matter interaction parameters in organic single-crystal microcavities.
    Nishimura T; Yamashita K; Takahashi S; Yamao T; Hotta S; Yanagi H; Nakayama M
    Opt Lett; 2018 Mar; 43(5):1047-1050. PubMed ID: 29489777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong coupling in mechanically flexible free-standing organic membranes.
    Georgiou K; Athanasiou M; Jayaprakash R; Lidzey DG; Itskos G; Othonos A
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38112504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity.
    Tian C; Tong Guo ; Zhao S; Zhai W; Ge C; Ran G
    RSC Adv; 2019 Nov; 9(62):35984-35989. PubMed ID: 35540621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum Nonlinear Optics with Polar J-Aggregates in Microcavities.
    Herrera F; Peropadre B; Pachon LA; Saikin SK; Aspuru-Guzik A
    J Phys Chem Lett; 2014 Nov; 5(21):3708-15. PubMed ID: 26278740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities.
    Jiang M; Li J; Xu C; Wang S; Shan C; Xuan B; Ning Y; Shen D
    Opt Express; 2014 Oct; 22(20):23836-50. PubMed ID: 25321962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators.
    Zhang C; Zou CL; Yan Y; Hao R; Sun FW; Han ZF; Zhao YS; Yao J
    J Am Chem Soc; 2011 May; 133(19):7276-9. PubMed ID: 21517020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.