These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25234876)

  • 1. Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters.
    Nouh M; Aldraihem O; Baz A
    J Acoust Soc Am; 2014 Feb; 135(2):669-78. PubMed ID: 25234876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine.
    Ahmed F; Yu G; Luo E
    J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Frequency Up-Conversion Piezoelectric Energy Harvester Shunted to a Synchronous Electric Charge Extraction Circuit.
    Peng X; Tang H; Li Z; Liang J; Yu L; Hu G
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of traveling thermoacoustic shock waves (L).
    Biwa T; Takahashi T; Yazaki T
    J Acoust Soc Am; 2011 Dec; 130(6):3558-61. PubMed ID: 22225011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.
    Zhang VY; Dubus B; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):704-16. PubMed ID: 18407860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic energy harvesting using an electromechanical Helmholtz resonator.
    Liu F; Phipps A; Horowitz S; Ngo K; Cattafesta L; Nishida T; Sheplak M
    J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensation in a steady-flow thermoacoustic refrigerator.
    Hiller RA; Swift GW
    J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.
    Beker L; Benet A; Meybodi AT; Eovino B; Pisano AP; Lin L
    Biomed Microdevices; 2017 Jun; 19(2):32. PubMed ID: 28425028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.
    Khan FU; Izhar
    Rev Sci Instrum; 2016 Feb; 87(2):025003. PubMed ID: 26931884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aeroacoustically driven thermoacoustic heat pump.
    Slaton WV; Zeegers JC
    J Acoust Soc Am; 2005 Jun; 117(6):3628-35. PubMed ID: 16018466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.
    Zhang H; Afzalul K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1016-23. PubMed ID: 24859665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines.
    Penelet G; Gusev V; Lotton P; Bruneau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016625. PubMed ID: 16090125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Drifter-Based Self-Powered Piezoelectric Sensor for Ocean Wave Measurements.
    Kargar SM; Hao G
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy harvesting from electric power lines employing the Halbach arrays.
    He W; Li P; Wen Y; Zhang J; Lu C; Yang A
    Rev Sci Instrum; 2013 Oct; 84(10):105004. PubMed ID: 24182155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.