BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25234913)

  • 1. Local ultrasonic wave velocities in trabeculae measured by micro-Brillouin scattering.
    Tsubota R; Fukui K; Matsukawa M
    J Acoust Soc Am; 2014 Feb; 135(2):EL109-14. PubMed ID: 25234913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study.
    Mizuno K; Somiya H; Kubo T; Matsukawa M; Otani T; Tsujimoto T
    J Acoust Soc Am; 2010 Nov; 128(5):3181-9. PubMed ID: 21110613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic properties in marrow-filled and water-filled bovine femoral trabecular bones in vitro.
    Lee KI
    J Acoust Soc Am; 2012 Oct; 132(4):EL296-302. PubMed ID: 23039568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative investigation of elastic properties in a trabecula using micro-Brillouin scattering and scanning acoustic microscopy.
    Kawabe M; Fukui K; Matsukawa M; Granke M; Saïed A; Grimal Q; Laugier P
    J Acoust Soc Am; 2012 Jul; 132(1):EL54-60. PubMed ID: 22779573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave velocities in articular cartilage measured by micro-Brillouin scattering technique.
    Kawase M; Yasui H; Shibagaki Y; Kawabe M; Matsukawa M
    J Acoust Soc Am; 2018 Dec; 144(6):EL492. PubMed ID: 30599656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cortical endplate on speed of sound in bovine femoral trabecular bone in vitro.
    Hwang KS; Lee KI
    J Acoust Soc Am; 2012 Dec; 132(6):EL463-9. PubMed ID: 23231209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and analysis of multiple scattering of acoustic waves in complex media: application to the trabecular bone.
    Wojcik J; Litniewski J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):1908-18. PubMed ID: 21973345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a micro-Brillouin scattering technique to characterize bone in the GHz range.
    Matsukawa M; Tsubota R; Kawabe M; Fukui K
    Ultrasonics; 2014 Jul; 54(5):1155-61. PubMed ID: 24139301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Specific Morphological Features of Alveolar Bone.
    Zhou S; Yang Y; Ha N; Zhang P; Ma X; Gong X; Hong Y; Yang X; Yang S; Dai Q; Jiang L
    J Craniofac Surg; 2018 Jul; 29(5):1216-1219. PubMed ID: 29498973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant.
    Mathieu V; Fukui K; Matsukawa M; Kawabe M; Vayron R; Soffer E; Anagnostou F; Haiat G
    J Biomech Eng; 2011 Feb; 133(2):021006. PubMed ID: 21280878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-converted diffuse ultrasonic backscatter.
    Hu P; Kube CM; Koester LW; Turner JA
    J Acoust Soc Am; 2013 Aug; 134(2):982-90. PubMed ID: 23927097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-wave propagation imaging to evaluate the structure of cancellous bone.
    Yamashita K; Fujita F; Mizuno K; Mano I; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1160-6. PubMed ID: 22711411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone.
    Hoffmeister BK; Huber MT; Viano AM; Huang J
    J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone.
    Lee KI
    J Acoust Soc Am; 2013 Nov; 134(5):EL381-6. PubMed ID: 24181979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound Speed of Sound Measurements in Trabecular Bone Using the Echographic Response of a Metallic Pin.
    Guipieri S; Nagatani Y; Bosc R; Nguyen VH; Chappard C; Geiger D; Haïat G
    Ultrasound Med Biol; 2015 Nov; 41(11):2966-76. PubMed ID: 26320667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Wave Velocities and Refractive Indices in an m-Plane GaN Single Crystal Plate and c-Axis Oriented ScAlN Films Measured by Brillouin Scattering Techniques.
    Ichihashi H; Yanagitani T; Suzuki M; Takayanagi S; Kawabe M; Tomita S; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):717-725. PubMed ID: 28113844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.