These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25235007)

  • 1. Time-domain separation of interfering waves in cancellous bone using bandlimited deconvolution: simulation and phantom study.
    Wear KA
    J Acoust Soc Am; 2014 Apr; 135(4):2102-12. PubMed ID: 25235007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method.
    Wear K; Nagatani Y; Mizuno K; Matsukawa M
    J Acoust Soc Am; 2014 Oct; 136(4):2015-24. PubMed ID: 25324100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.
    Wear KA
    J Acoust Soc Am; 2013 Apr; 133(4):2490-501. PubMed ID: 23556613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of two-component ultrasound pulses in cancellous bone using modified least squares prony method--phantom experiment and simulation.
    Wear KA
    Ultrasound Med Biol; 2010 Feb; 36(2):276-87. PubMed ID: 20113862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone.
    Groopman AM; Katz JI; Holland MR; Fujita F; Matsukawa M; Mizuno K; Wear KA; Miller JG
    J Acoust Soc Am; 2015 Aug; 138(2):594-604. PubMed ID: 26328678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.
    Taki H; Nagatani Y; Matsukawa M; Mizuno K; Sato T
    J Acoust Soc Am; 2015 Apr; 137(4):1683-92. PubMed ID: 25920821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.
    Taki H; Nagatani Y; Matsukawa M; Kanai H; Izumi SI
    J Acoust Soc Am; 2017 Oct; 142(4):2322. PubMed ID: 29092537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
    Nelson AM; Hoffman JJ; Anderson CC; Holland MR; Nagatani Y; Mizuno K; Matsukawa M; Miller JG
    J Acoust Soc Am; 2011 Oct; 130(4):2233-40. PubMed ID: 21973378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.
    Hoffman JJ; Nelson AM; Holland MR; Miller JG
    J Acoust Soc Am; 2012 Sep; 132(3):1830-7. PubMed ID: 22978910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.
    Anderson CC; Bauer AQ; Holland MR; Pakula M; Laugier P; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2010 Nov; 128(5):2940-8. PubMed ID: 21110589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.
    Nagatani Y; Tachibana RO
    J Acoust Soc Am; 2014 Mar; 135(3):1197-206. PubMed ID: 24606262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study.
    Tasinkevych Y; Podhajecki J; FaliƄska K; Litniewski J
    Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.