BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 25236195)

  • 1. Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry.
    Seisonen S; Kivima E; Vene K
    Food Chem; 2015 Feb; 169():34-40. PubMed ID: 25236195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous qualitative and quantitative analyses of volatile components in Chinese honey of six botanical origins using headspace solid-phase microextraction and gas chromatography-mass spectrometry.
    Liang D; Wen H; Zhou Y; Wang T; Jia G; Cui Z; Li A
    J Sci Food Agric; 2023 Dec; 103(15):7631-7642. PubMed ID: 37433752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Evodia rutaecarpa (Juss) Benth honey: volatile profile, odor-active compounds and odor properties.
    Li H; Liu Z; Shuai M; Song M; Qiao D; Peng W; Chen L
    J Sci Food Agric; 2024 Mar; 104(4):2038-2048. PubMed ID: 37909381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the aroma profile of edible flowers using HS-SPME/GC-MS and chemometrics.
    Giannetti V; Biancolillo A; Marini F; Boccacci Mariani M; Livi G
    Food Res Int; 2024 Feb; 178():114001. PubMed ID: 38309925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination.
    Machado AM; Antunes M; Miguel MG; Vilas-Boas M; Figueiredo AC
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Honey Volatiles as a Fingerprint for Botanical Origin-A Review on their Occurrence on Monofloral Honeys.
    Machado AM; Miguel MG; Vilas-Boas M; Figueiredo AC
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HS-SPME-GC-MS and Electronic Nose Reveal Differences in the Volatile Profiles of
    Zhou Y; Abbas F; Wang Z; Yu Y; Yue Y; Li X; Yu R; Fan Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochemical profiling of red raspberry (Rubus idaeus L.) honey and investigation of compounds related to its pollen occurrence.
    Leoni V; Panseri S; Giupponi L; Pavlovic R; Gianoncelli C; Coatti G; Beretta G; Giorgi A
    J Sci Food Agric; 2024 Feb; ():. PubMed ID: 38345434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response Surface Methodology to Optimize the Isolation of Dominant Volatile Compounds from Monofloral Greek Thyme Honey Using SPME-GC-MS.
    Xagoraris M; Skouria A; Revelou PK; Alissandrakis E; Tarantilis PA; Pappas CS
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidisciplinary analysis of Italian Alpine wildflower honey reveals criticalities, diversity and value.
    Leoni V; Giupponi L; Pavlovic R; Gianoncelli C; Cecati F; Ranzato E; Martinotti S; Pedrali D; Giorgi A; Panseri S
    Sci Rep; 2021 Sep; 11(1):19316. PubMed ID: 34588574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aromatic profiles and enantiomeric distributions of volatile compounds during the ripening of Dendropanax dentiger honey.
    Li H; Liu Z; Song M; Jiang A; Lang Y; Chen L
    Food Res Int; 2024 Jan; 175():113677. PubMed ID: 38129024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Fluorescence Spectrometry to Determine the Botanical Origin of Filtered Honeys.
    Wilczyńska A; Żak N
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32188098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic variation in the aroma characteristics of Rhus chinensis honey at different stages after capping.
    Li H; Lang Y; Liu Z; Song M; Jiang A; Li N; Chen L
    Food Chem; 2024 Aug; 449():139226. PubMed ID: 38608603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic analysis reveals linkage between chemical composition and sensory quality of different floral honey samples.
    Kang MJ; Kim KR; Kim K; Morrill AG; Jung C; Sun S; Lee DH; Suh JH; Sung J
    Food Res Int; 2023 Nov; 173(Pt 2):113454. PubMed ID: 37803778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring stingless bee honey from selected regions of Peninsular Malaysia through gas chromatography-mass spectrometry-based untargeted metabolomics.
    Manickavasagam G; Saaid M; Lim V
    J Food Sci; 2024 Feb; 89(2):1058-1072. PubMed ID: 38221804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of differences in sensory, volatile odour-activity and volatile profile of commercial plant-based meats.
    Thong A; Tan VWK; Chan G; Choy MJY; Forde CG
    Food Res Int; 2024 Feb; 177():113848. PubMed ID: 38225123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a LC-QTOF-MS based dilute-and-shoot approach for the botanical discrimination of honeys.
    Tian L; Bilamjian S; Liu L; Akiki C; Cuthbertson DJ; Anumol T; Bayen S
    Anal Chim Acta; 2024 May; 1304():342536. PubMed ID: 38637048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From flower to honey bouquet: possible markers for the botanical origin of Robinia honey.
    Aronne G; Giovanetti M; Sacchi R; De Micco V
    ScientificWorldJournal; 2014; 2014():547275. PubMed ID: 25478595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities.
    Manyi-Loh CE; Ndip RN; Clarke AM
    Int J Mol Sci; 2011; 12(12):9514-32. PubMed ID: 22272147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proof-of-concept study on the versatility of liquid chromatography coupled to high-resolution mass spectrometry to screen for various contaminants and highlight markers of floral and geographical origin for different honeys.
    Makni Y; Diallo T; Guérin T; Parinet J
    Food Chem; 2024 Mar; 436():137720. PubMed ID: 37844510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.