BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25236454)

  • 1. Multiple quantitative trait analysis using bayesian networks.
    Scutari M; Howell P; Balding DJ; Mackay I
    Genetics; 2014 Sep; 198(1):129-37. PubMed ID: 25236454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.
    Gianola D; Okut H; Weigel KA; Rosa GJ
    BMC Genet; 2011 Oct; 12():87. PubMed ID: 21981731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-genome analysis of multienvironment or multitrait QTL in MAGIC.
    Verbyla AP; Cavanagh CR; Verbyla KL
    G3 (Bethesda); 2014 Sep; 4(9):1569-84. PubMed ID: 25237109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Selection in Winter Wheat Breeding Using a Recommender Approach.
    Lozada DN; Carter AH
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32664601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.
    Dos Santos JPR; Fernandes SB; McCoy S; Lozano R; Brown PJ; Leakey ADB; Buckler ES; Garcia AAF; Gore MA
    G3 (Bethesda); 2020 Feb; 10(2):769-781. PubMed ID: 31852730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic Prediction and Genome-Wide Association Studies of Flour Yield and Alveograph Quality Traits Using Advanced Winter Wheat Breeding Material.
    Kristensen PS; Jensen J; Andersen JR; Guzmán C; Orabi J; Jahoor A
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31480460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction.
    Lehermeier C; Krämer N; Bauer E; Bauland C; Camisan C; Campo L; Flament P; Melchinger AE; Menz M; Meyer N; Moreau L; Moreno-González J; Ouzunova M; Pausch H; Ranc N; Schipprack W; Schönleben M; Walter H; Charcosset A; Schön CC
    Genetics; 2014 Sep; 198(1):3-16. PubMed ID: 25236445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiparent advanced generation inter-cross population for genetic analysis in wheat.
    Huang BE; George AW; Forrest KL; Kilian A; Hayden MJ; Morell MK; Cavanagh CR
    Plant Biotechnol J; 2012 Sep; 10(7):826-39. PubMed ID: 22594629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Random-Model Approach to QTL Mapping in Multiparent Advanced Generation Intercross (MAGIC) Populations.
    Wei J; Xu S
    Genetics; 2016 Feb; 202(2):471-86. PubMed ID: 26715662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.
    Lehermeier C; Schön CC; de Los Campos G
    Genetics; 2015 Sep; 201(1):323-37. PubMed ID: 26122758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis.
    Toosi A; Fernando RL; Dekkers JCM
    Genet Sel Evol; 2018 Jun; 50(1):32. PubMed ID: 29914353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings.
    Puglisi D; Visioni A; Ozkan H; Kara İ; Lo Piero AR; Rachdad FE; Tondelli A; Valè G; Cattivelli L; Fricano A
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35099521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits.
    Montesinos-López OA; Montesinos-López A; Crossa J; Gianola D; Hernández-Suárez CM; Martín-Vallejo J
    G3 (Bethesda); 2018 Dec; 8(12):3829-3840. PubMed ID: 30291108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing Pleiotropy
    Boehm FJ; Chesler EJ; Yandell BS; Broman KW
    G3 (Bethesda); 2019 Jul; 9(7):2317-2324. PubMed ID: 31092608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general modeling framework for genome ancestral origins in multiparental populations.
    Zheng C; P Boer M; van Eeuwijk FA
    Genetics; 2014 Sep; 198(1):87-101. PubMed ID: 25236451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits.
    Runcie DE; Qu J; Cheng H; Crawford L
    Genome Biol; 2021 Jul; 22(1):213. PubMed ID: 34301310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression.
    Gianola D; Fernando RL; Schön CC
    Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes.
    Guo J; Khan J; Pradhan S; Shahi D; Khan N; Avci M; Mcbreen J; Harrison S; Brown-Guedira G; Murphy JP; Johnson J; Mergoum M; Esten Mason R; Ibrahim AMH; Sutton R; Griffey C; Babar MA
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33126620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.