These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25236484)

  • 1. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.
    Sun H; Lu L; Zuo Y; Wang Y; Jiao Y; Zeng WZ; Huang C; Zhu MX; Zamponi GW; Zhou T; Xu TL; Cheng J; Li Y
    Nat Commun; 2014 Sep; 5():4980. PubMed ID: 25236484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis.
    Konopacki FA; Jaafari N; Rocca DL; Wilkinson KA; Chamberlain S; Rubin P; Kantamneni S; Mellor JR; Henley JM
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19772-7. PubMed ID: 22089239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of inhibitory glycine receptors by phosphorylation by protein kinase C and cAMP-dependent protein kinase.
    Vaello ML; Ruiz-Gómez A; Lerma J; Mayor F
    J Biol Chem; 1994 Jan; 269(3):2002-8. PubMed ID: 8294452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMOylation regulates kainate-receptor-mediated synaptic transmission.
    Martin S; Nishimune A; Mellor JR; Henley JM
    Nature; 2007 May; 447(7142):321-5. PubMed ID: 17486098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons.
    Qi M; Wu C; Wang Z; Zhou L; Men C; Du Y; Huang S; Chen L; Chen L
    Cell Physiol Biochem; 2018; 45(3):1084-1096. PubMed ID: 29439248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted transcriptional upregulation of SENP1 by CRISPR activation enhances deSUMOylation pathways to elicit antinociception in the spinal nerve ligation model of neuropathic pain.
    Gomez K; Allen HN; Duran P; Loya-Lopez S; Calderon-Rivera A; Moutal A; Tang C; Nelson TS; Perez-Miller S; Khanna R
    Pain; 2024 Apr; 165(4):866-883. PubMed ID: 37862053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways.
    Martin S; Henley JM
    EMBO J; 2004 Dec; 23(24):4749-59. PubMed ID: 15549132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution.
    Nagy I; Woolf CJ; Dray A; Urbán L
    J Comp Neurol; 1994 Jun; 344(3):321-35. PubMed ID: 8063957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postsynaptic kainate receptor recycling and surface expression are regulated by metabotropic autoreceptor signalling.
    González-González IM; Henley JM
    Traffic; 2013 Jul; 14(7):810-22. PubMed ID: 23556457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification and movement: Phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors.
    Wilkinson KA; Konopacki F; Henley JM
    Commun Integr Biol; 2012 Mar; 5(2):223-6. PubMed ID: 22808340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine receptor internalization by protein kinases activation.
    Velázquez-Flores MÁ; Salceda R
    Synapse; 2011 Nov; 65(11):1231-8. PubMed ID: 21656573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization.
    Kawasaki Y; Kohno T; Zhuang ZY; Brenner GJ; Wang H; Van Der Meer C; Befort K; Woolf CJ; Ji RR
    J Neurosci; 2004 Sep; 24(38):8310-21. PubMed ID: 15385614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic kainate receptors regulate spinal sensory transmission.
    Kerchner GA; Wilding TJ; Li P; Zhuo M; Huettner JE
    J Neurosci; 2001 Jan; 21(1):59-66. PubMed ID: 11150320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric potentiation of glycine receptor chloride currents by glutamate.
    Liu J; Wu DC; Wang YT
    Nat Neurosci; 2010 Oct; 13(10):1225-32. PubMed ID: 20835251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the glycine response by Ca2+-permeable AMPA receptors in rat spinal neurones.
    Xu TL; Li JS; Jin YH; Akaike N
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):701-11. PubMed ID: 9882741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kainate receptor post-translational modifications differentially regulate association with 4.1N to control activity-dependent receptor endocytosis.
    Copits BA; Swanson GT
    J Biol Chem; 2013 Mar; 288(13):8952-65. PubMed ID: 23400781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse.
    Graham BA; Tadros MA; Schofield PR; Callister RJ
    J Physiol; 2011 May; 589(Pt 10):2459-74. PubMed ID: 21486794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons.
    Hennekinne L; Colasse S; Triller A; Renner M
    J Neurosci; 2013 Jul; 33(28):11432-9. PubMed ID: 23843515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses.
    Charrier C; Machado P; Tweedie-Cullen RY; Rutishauser D; Mansuy IM; Triller A
    Nat Neurosci; 2010 Nov; 13(11):1388-95. PubMed ID: 20935643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKC-dependent autoregulation of membrane kainate receptors.
    Rivera R; Rozas JL; Lerma J
    EMBO J; 2007 Oct; 26(20):4359-67. PubMed ID: 17898803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.