BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25236605)

  • 1. Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis.
    Krishnamurthy P; Tan XF; Lim TK; Lim TM; Kumar PP; Loh CS; Lin Q
    Proteomics; 2014 Nov; 14(21-22):2545-57. PubMed ID: 25236605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Characterisation of the Salt Gland-Enriched Tissues of the Mangrove Tree Species Avicennia officinalis.
    Tan WK; Lim TK; Loh CS; Kumar P; Lin Q
    PLoS One; 2015; 10(7):e0133386. PubMed ID: 26193361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data in support of the proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis.
    Krishnamurthy P; Tan XF; Lim TK; Lim TM; Kumar PP; Loh CS; Lin Q
    Data Brief; 2015 Dec; 5():646-52. PubMed ID: 26649327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.
    Tan WK; Ang Y; Lim TK; Lim TM; Kumar P; Loh CS; Lin Q
    Electrophoresis; 2015 Oct; 36(19):2473-81. PubMed ID: 26105009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis.
    Jyothi-Prakash PA; Mohanty B; Wijaya E; Lim TM; Lin Q; Loh CS; Kumar PP
    BMC Plant Biol; 2014 Nov; 14():291. PubMed ID: 25404140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment.
    Tan WK; Lin Q; Lim TM; Kumar P; Loh CS
    Plant Cell Environ; 2013 Aug; 36(8):1410-22. PubMed ID: 23336288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide enhances salt secretion and Na(+) sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H(+)-ATPase and Na(+)/H(+) antiporter under high salinity.
    Chen J; Xiao Q; Wu F; Dong X; He J; Pei Z; Zheng H
    Tree Physiol; 2010 Dec; 30(12):1570-85. PubMed ID: 21030403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression.
    Shen ZJ; Chen J; Ghoto K; Hu WJ; Gao GF; Luo MR; Li Z; Simon M; Zhu XY; Zheng HL
    Tree Physiol; 2018 Nov; 38(11):1605-1622. PubMed ID: 29917117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic snapshot of spearmint (Mentha spicata L.) leaf trichomes: a genuine terpenoid factory.
    Champagne A; Boutry M
    Proteomics; 2013 Nov; 13(22):3327-32. PubMed ID: 24124164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis.
    Krishnamurthy P; Mohanty B; Wijaya E; Lee DY; Lim TM; Lin Q; Xu J; Loh CS; Kumar PP
    Sci Rep; 2017 Aug; 7(1):10031. PubMed ID: 28855698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment.
    Kasvandik S; Sillaste G; Velthut-Meikas A; Mikelsaar AV; Hallap T; Padrik P; Tenson T; Jaakma Ü; Kõks S; Salumets A
    Proteomics; 2015 Jun; 15(11):1906-20. PubMed ID: 25603787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and expression analysis of a full-length cDNA encoding a Kandelia candel tonoplast intrinsic protein.
    Huang W; Fang XD; Lin QF; Li GY; Zhao WM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):147-52. PubMed ID: 15966312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.
    Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X
    J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Oryza sativa plasma membrane proteome using combined protein and peptide fractionation approaches in conjunction with mass spectrometry.
    Natera SH; Ford KL; Cassin AM; Patterson JH; Newbigin EJ; Bacic A
    J Proteome Res; 2008 Mar; 7(3):1159-87. PubMed ID: 18260611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid composition of mangrove and its relevance to salt tolerance.
    Oku H; Baba S; Koga H; Takara K; Iwasaki H
    J Plant Res; 2003 Feb; 116(1):37-45. PubMed ID: 12605298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics reveals new salt responsive proteins associated with rice plasma membrane.
    Nohzadeh Malakshah S; Habibi Rezaei M; Heidari M; Salekdeh GH
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2144-54. PubMed ID: 17827676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.