BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 25236739)

  • 1. Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.
    Bazil JN; Pannala VR; Dash RK; Beard DA
    Free Radic Biol Med; 2014 Dec; 77():121-9. PubMed ID: 25236739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain.
    Markevich NI; Hoek JB
    Biochim Biophys Acta; 2015; 1847(6-7):656-79. PubMed ID: 25868872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I).
    Vinogradov AD
    Biochim Biophys Acta; 2008; 1777(7-8):729-34. PubMed ID: 18471432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site I
    Fang J; Wong HS; Brand MD
    Redox Biol; 2020 Oct; 37():101722. PubMed ID: 32971363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide mediates Mn(II)-catalyzed decomposition of hydrogen peroxide and peroxidation reactions.
    Liochev SI; Fridovich I
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12485-90. PubMed ID: 15310847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Escherichia coli respiratory complex I by Zn(2+).
    Schulte M; Mattay D; Kriegel S; Hellwig P; Friedrich T
    Biochemistry; 2014 Oct; 53(40):6332-9. PubMed ID: 25238255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation.
    Bazil JN; Beard DA; Vinnakota KC
    Biophys J; 2016 Feb; 110(4):962-71. PubMed ID: 26910433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
    Moxley MA; Beard DA; Bazil JN
    Biophys J; 2014 Dec; 107(12):2993-3007. PubMed ID: 25517164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metformin and respiratory chain complex I: the last piece of the puzzle?
    Fontaine E
    Biochem J; 2014 Nov; 463(3):e3-5. PubMed ID: 25301073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla.
    Sadri S; Zhang X; Audi SH; Cowley AW; Dash RK
    Function (Oxf); 2023; 4(5):zqad038. PubMed ID: 37575476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology.
    Ježek P; Jabůrek M; Holendová B; Engstová H; Dlasková A
    Antioxid Redox Signal; 2023 Oct; 39(10-12):635-683. PubMed ID: 36793196
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic Mathematical Modeling of Oxidative Phosphorylation in Cardiomyocyte Mitochondria.
    Tseng WW; Wei AC
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN
    Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOXA Is Important for
    Zhu X; Sayari M; Islam MR; Daayf F
    J Fungi (Basel); 2021 Sep; 7(10):. PubMed ID: 34682235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction.
    Lee H; Jose PA
    Front Pharmacol; 2021; 12():670076. PubMed ID: 34017260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Expression of Putative Pathogenicity-Related Genes in
    Zhu X; Arfaoui A; Sayari M; Adam LR; Daayf F
    Pathogens; 2021 Apr; 10(5):. PubMed ID: 33922492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing Myocardial Injury Following Non-Cardiac Surgery: A Potential Role for Preoperative Antioxidant Therapy with Ubiquinone.
    Chen Q; Qi S; Hocum-Stone L; Lesnefsky E; Kelly RF; McFalls EO
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33579045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production.
    Sadri S; Tomar N; Yang C; Audi SH; Cowley AW; Dash RK
    Free Radic Res; 2020 Oct; 54(10):695-721. PubMed ID: 33059489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally modeling mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production.
    Manhas N; Duong QV; Lee P; Richardson JD; Robertson JD; Moxley MA; Bazil JN
    J Biol Chem; 2020 Nov; 295(45):15262-15279. PubMed ID: 32859750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.