These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25237771)

  • 1. Stainless steel in coastal seawater: sunlight counteracts biologically enhanced cathodic kinetics.
    Eashwar M; Lakshman Kumar A; Sreedhar G; Kennedy J; Suresh Bapu RH
    Biofouling; 2014 Sep; 30(8):929-39. PubMed ID: 25237771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of sunlight on the localized corrosion of UNS S31600 in natural seawater.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G
    Biofouling; 2011 Sep; 27(8):837-49. PubMed ID: 21819315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater.
    Eashwar M; Sathish Kumar P; Ravishankar R; Subramanian G
    Biofouling; 2013; 29(2):185-93. PubMed ID: 23330652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P
    Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enrichment of surface passive film on stainless steel during biofilm development in coastal seawater.
    Eashwar M; Sreedhar G; Lakshman Kumar A; Hariharasuthan R; Kennedy J
    Biofouling; 2015; 31(6):511-25. PubMed ID: 26222313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures.
    Lee JS; Ray RI; Lowe KL; Jones-Meehan J; Little BJ
    Biofouling; 2003 Apr; 19 Suppl():151-60. PubMed ID: 14618716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface.
    Orfei LH; Simison S; Busalmen JP
    Environ Sci Technol; 2006 Oct; 40(20):6473-8. PubMed ID: 17120583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater.
    Acuña N; Ortega-Morales BO; Valadez-González A
    Mar Biotechnol (NY); 2006; 8(1):62-70. PubMed ID: 16453199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portraying manganese biofilms
    Lakshman Kumar A; Eashwar M; Sreedhar G; Vengatesan S; Prabu V; Shanmugam VM
    Biofouling; 2019 Aug; 35(7):768-784. PubMed ID: 31530181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of stainless steel electrodes after electrochemical analysis in sea water condition.
    Kovendhan M; Kang H; Jeong S; Youn JS; Oh I; Park YK; Jeon KJ
    Environ Res; 2019 Jun; 173():549-555. PubMed ID: 31004909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater.
    Gao Y; Wu J; Zhang D; Wang P; Wang Y; Zhu L; Li C; Wang W; Zhao J; Yang C; Yang K
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18842-18855. PubMed ID: 38351355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel.
    Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R
    Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of enzymatic catalysis of oxygen reduction on stainless steels under marine biofilm.
    Faimali M; Benedetti A; Pavanello G; Chelossi E; Wrubl F; Mollica A
    Biofouling; 2011 Apr; 27(4):375-84. PubMed ID: 21526439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular methods resolve the bacterial composition of natural marine biofilms on galvanically coupled stainless steel cathodes.
    Oldham AL; Steinberg MK; Duncan KE; Makama Z; Beech I
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):167-180. PubMed ID: 28013395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mn cycling in marine biofilms: effect on the rate of localized corrosion.
    Dexter SC; Xu K; Luther GL
    Biofouling; 2003 Apr; 19 Suppl():139-49. PubMed ID: 14618715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater.
    Blackwood DJ; Lim CS; Teo SL
    Biofouling; 2010 Oct; 26(7):779-85. PubMed ID: 20818571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Sowers KR; Nielsen PH
    J Appl Microbiol; 2008 Dec; 105(6):2231-8. PubMed ID: 19016973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.
    Miyanaga K; Terashi R; Kawai H; Unno H; Tanji Y
    Biotechnol Bioeng; 2007 Jul; 97(4):850-7. PubMed ID: 17163515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.