These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25237787)

  • 1. Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy.
    Zhu J; Jiang J; Ai W; Fan Z; Huang X; Zhang H; Yu T
    Nanoscale; 2014 Nov; 6(21):12990-3000. PubMed ID: 25237787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes.
    Xia X; Xiong Q; Zhang Y; Tu J; Ng CF; Fan HJ
    Small; 2014 Jun; 10(12):2419-28. PubMed ID: 24610815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries.
    Jiang J; Luo J; Zhu J; Huang X; Liu J; Yu T
    Nanoscale; 2013 Sep; 5(17):8105-13. PubMed ID: 23884214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries.
    Li J; Xiong S; Liu Y; Ju Z; Qian Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectrical investigation and electrochemical performance of nickel-oxide/carbon sphere hybrids through interface manipulation.
    Yang X; Zhang Y; Wu G; Zhu C; Zou W; Gao Y; Tian J; Zheng Z
    J Colloid Interface Sci; 2016 May; 469():287-295. PubMed ID: 26897565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials.
    Ma X; Li Y; Wen Z; Gao F; Liang C; Che R
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):974-9. PubMed ID: 25514200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.
    Zhang F; Qi L
    Adv Sci (Weinh); 2016 Sep; 3(9):1600049. PubMed ID: 27711259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Electronic Properties of Transition-Metal Oxides Attached to a Single-Walled CNT as a Lithium-Ion Battery Electrode: A First-Principles Study.
    Tack LW; Azam MA; Seman RN
    J Phys Chem A; 2017 Apr; 121(13):2636-2642. PubMed ID: 28319385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.
    Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X
    ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putting Nanoarmors on Yolk-Shell Si@C Nanoparticles: A Reliable Engineering Way To Build Better Si-Based Anodes for Li-Ion Batteries.
    Jiang J; Zhang H; Zhu J; Li L; Liu Y; Meng T; Ma L; Xu M; Liu J; Li CM
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24157-24163. PubMed ID: 29947510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FeF3@Thin Nickel Ammine Nitrate Matrix: Smart Configurations and Applications as Superior Cathodes for Li-Ion Batteries.
    Jiang J; Li L; Xu M; Zhu J; Li CM
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16240-7. PubMed ID: 27269361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: a general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes.
    Zhang Y; Zhang W; Yang Z; Gu H; Zhu Q; Yang S; Li M
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3932-6. PubMed ID: 25656353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-induced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries.
    Qu F; Li C; Wang Z; Strunk HP; Maier J
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8782-8. PubMed ID: 24797020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.