These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies. Chen GP; Agee MM; Furche F J Chem Theory Comput; 2018 Nov; 14(11):5701-5714. PubMed ID: 30240213 [TBL] [Abstract][Full Text] [Related]
4. Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene. Zheng H; Gan Y; Abbamonte P; Wagner LK Phys Rev Lett; 2017 Oct; 119(16):166402. PubMed ID: 29099202 [TBL] [Abstract][Full Text] [Related]
5. Phonon-induced many-body renormalization of the electronic properties of graphene. Tse WK; Das Sarma S Phys Rev Lett; 2007 Dec; 99(23):236802. PubMed ID: 18233392 [TBL] [Abstract][Full Text] [Related]
6. The effective fine-structure constant of freestanding graphene measured in graphite. Reed JP; Uchoa B; Joe YI; Gan Y; Casa D; Fradkin E; Abbamonte P Science; 2010 Nov; 330(6005):805-8. PubMed ID: 21051634 [TBL] [Abstract][Full Text] [Related]
7. Screening of coulomb impurities in graphene. Terekhov IS; Milstein AI; Kotov VN; Sushkov OP Phys Rev Lett; 2008 Feb; 100(7):076803. PubMed ID: 18352585 [TBL] [Abstract][Full Text] [Related]
8. Effective theory of excitations in a Feshbach-resonant superfluid. Liu WV Phys Rev Lett; 2006 Mar; 96(8):080401. PubMed ID: 16606155 [TBL] [Abstract][Full Text] [Related]
9. Quasiparticle energies and band gaps in graphene nanoribbons. Yang L; Park CH; Son YW; Cohen ML; Louie SG Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426 [TBL] [Abstract][Full Text] [Related]
12. Infrared behavior in systems with a broken continuous symmetry: classical O(N) model versus interacting bosons. Dupuis N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031120. PubMed ID: 21517467 [TBL] [Abstract][Full Text] [Related]
13. Charge renormalization and other exact coupling corrections to the dipolar effective interaction in an electrolyte near a dielectric wall. Aqua JN; Cornu F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056117. PubMed ID: 15600702 [TBL] [Abstract][Full Text] [Related]
14. Quantum dots with disorder and interactions: a solvable large-g limit. Murthy G; Shankar R Phys Rev Lett; 2003 Feb; 90(6):066801. PubMed ID: 12633315 [TBL] [Abstract][Full Text] [Related]
15. Density dependent exchange contribution to partial differential mu/ partial differential n and compressibility in graphene. Hwang EH; Hu BY; Das Sarma S Phys Rev Lett; 2007 Nov; 99(22):226801. PubMed ID: 18233311 [TBL] [Abstract][Full Text] [Related]
16. Fermi velocity reduction in graphene due to enhanced vacuum fluctuations. Escudero F; Ardenghi JS J Phys Condens Matter; 2021 Sep; 33(48):. PubMed ID: 34500446 [TBL] [Abstract][Full Text] [Related]
17. Impact of Many-Body Effects on Landau Levels in Graphene. Sonntag J; Reichardt S; Wirtz L; Beschoten B; Katsnelson MI; Libisch F; Stampfer C Phys Rev Lett; 2018 May; 120(18):187701. PubMed ID: 29775369 [TBL] [Abstract][Full Text] [Related]
18. Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity. Karnatak P; Goswami S; Kochat V; Pal AN; Ghosh A Phys Rev Lett; 2014 Jul; 113(2):026601. PubMed ID: 25062215 [TBL] [Abstract][Full Text] [Related]
19. Diagrammatic Monte Carlo method for many-polaron problems. Mishchenko AS; Nagaosa N; Prokof'ev N Phys Rev Lett; 2014 Oct; 113(16):166402. PubMed ID: 25361271 [TBL] [Abstract][Full Text] [Related]
20. Heavy quark diffusion in perturbative QCD at next-to-leading order. Caron-Huot S; Moore GD Phys Rev Lett; 2008 Feb; 100(5):052301. PubMed ID: 18352364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]