BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25238412)

  • 1. Discovery and characterization of two novel salt-tolerance genes in Puccinellia tenuiflora.
    Li Y; Takano T; Liu S
    Int J Mol Sci; 2014 Sep; 15(9):16469-83. PubMed ID: 25238412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning and characterization of plasma membrane- and vacuolar-type Na⁺/H⁺ antiporters of an alkaline-salt-tolerant monocot, Puccinellia tenuiflora.
    Kobayashi S; Abe N; Yoshida KT; Liu S; Takano T
    J Plant Res; 2012 Jul; 125(4):587-94. PubMed ID: 22270695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation.
    Guan Q; Wang Z; Wang X; Takano T; Liu S
    J Plant Physiol; 2015 Mar; 175():183-91. PubMed ID: 25644292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide DNA methylation analysis and biochemical responses provide insights into the initial domestication of halophyte Puccinellia tenuiflora.
    Li L; Lu H; Wang H; Bhanbhro N; Yang C
    Plant Cell Rep; 2021 Jul; 40(7):1181-1197. PubMed ID: 33945005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a PutAMT1;1 gene from Puccinellia tenuiflora.
    Bu Y; Sun B; Zhou A; Zhang X; Lee I; Liu S
    PLoS One; 2013; 8(12):e83111. PubMed ID: 24340088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome of extreme halophyte Puccinellia tenuiflora.
    Guo R; Zhao L; Zhang K; Gao D; Yang C
    BMC Genomics; 2020 Apr; 21(1):311. PubMed ID: 32306894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress.
    Zhang X; Wei L; Wang Z; Wang T
    J Integr Plant Biol; 2013 Mar; 55(3):262-76. PubMed ID: 23176661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the AKT1-type K(+) channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis.
    Ardie SW; Liu S; Takano T
    Plant Cell Rep; 2010 Aug; 29(8):865-74. PubMed ID: 20532513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora).
    Wang X; Yang R; Wang B; Liu G; Yang C; Cheng Y
    Mol Biol Rep; 2011 Oct; 38(7):4813-22. PubMed ID: 21153767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening.
    Chen Y; Zong J; Tan Z; Li L; Hu B; Chen C; Chen J; Liu J
    Plant Physiol Biochem; 2015 Apr; 89():44-52. PubMed ID: 25689412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.
    Zhang M; Takano T; Liu S; Zhang X
    Mol Biol Rep; 2014 Sep; 41(9):5839-49. PubMed ID: 24973879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides.
    Ayarpadikannan S; Chung E; Cho CW; So HA; Kim SO; Jeon JM; Kwak MH; Lee SW; Lee JH
    Plant Cell Rep; 2012 Jan; 31(1):35-48. PubMed ID: 21874516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic discovery of H
    Yu J; Zhang Y; Liu J; Wang L; Liu P; Yin Z; Guo S; Ma J; Lu Z; Wang T; She Y; Miao Y; Ma L; Chen S; Li Y; Dai S
    Planta; 2018 Nov; 248(5):1079-1099. PubMed ID: 30039231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of plasma membrane Na(+)/H(+) antiporter genes from salt-sensitive and salt-tolerant reed plants.
    Takahashi R; Liu S; Takano T
    J Plant Physiol; 2009 Feb; 166(3):301-9. PubMed ID: 18565619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis.
    Ardie SW; Xie L; Takahashi R; Liu S; Takano T
    J Exp Bot; 2009; 60(12):3491-502. PubMed ID: 19528529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation.
    Joshi A; Dang HQ; Vaid N; Tuteja N
    Plant Signal Behav; 2009 May; 4(5):400-12. PubMed ID: 19816097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a novel plasma membrane intrinsic protein gene, LcPIP1, in Leymus chinensis that enhances salt stress tolerance in Saccharomyces cerevisiae.
    Ma P; Liu J
    Appl Biochem Biotechnol; 2012 Jan; 166(2):479-85. PubMed ID: 22072142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization and identification of target protein of an important vesicle trafficking gene AlRab7 from a salt excreting halophyte Aeluropus lagopoides.
    Rajan N; Agarwal P; Patel K; Sanadhya P; Khedia J; Agarwal PK
    DNA Cell Biol; 2015 Feb; 34(2):83-91. PubMed ID: 25408252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice.
    Li X; Hou S; Gao Q; Zhao P; Chen S; Qi D; Lee BH; Cheng L; Liu G
    Plant Cell Physiol; 2013 Jul; 54(7):1172-85. PubMed ID: 23695503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.