These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25238655)

  • 21. Exogenous Glutathione Increases Arsenic Translocation Into Shoots and Alleviates Arsenic-Induced Oxidative Stress by Sustaining Ascorbate-Glutathione Homeostasis in Rice Seedlings.
    Jung HI; Kong MS; Lee BR; Kim TH; Chae MJ; Lee EJ; Jung GB; Lee CH; Sung JK; Kim YH
    Front Plant Sci; 2019; 10():1089. PubMed ID: 31572411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression.
    Rizwan M; Mostofa MG; Ahmad MZ; Imtiaz M; Mehmood S; Adeel M; Dai Z; Li Z; Aziz O; Zhang Y; Tu S
    Chemosphere; 2018 Jan; 191():23-35. PubMed ID: 29028538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.
    Vanhoudt N; Cuypers A; Horemans N; Remans T; Opdenakker K; Smeets K; Bello DM; Havaux M; Wannijn J; Van Hees M; Vangronsveld J; Vandenhove H
    J Environ Radioact; 2011 Jun; 102(6):638-45. PubMed ID: 21497426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na
    Zhang Y; Fang J; Wu X; Dong L
    BMC Plant Biol; 2018 Dec; 18(1):375. PubMed ID: 30594151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological / ultrastructural adjustments.
    Adil MF; Sehar S; Chen G; Chen ZH; Jilani G; Chaudhry AN; Shamsi IH
    Ecotoxicol Environ Saf; 2020 Mar; 190():110076. PubMed ID: 31838231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.).
    Wu LB; Ueda Y; Lai SK; Frei M
    Plant Cell Environ; 2017 Apr; 40(4):570-584. PubMed ID: 26991510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities.
    Khatun MA; Hossain MM; Bari MA; Abdullahil KM; Parvez MS; Alam MF; Kabir AH
    Plant Biol (Stuttg); 2018 Jul; 20(4):765-770. PubMed ID: 29718561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance.
    Pandey P; Srivastava RK; Rajpoot R; Rani A; Pandey AK; Dubey RS
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1516-28. PubMed ID: 26374546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential.
    Sousa B; Soares C; Oliveira F; Martins M; Branco-Neves S; Barbosa B; Ataíde I; Teixeira J; Azenha M; Azevedo RA; Fidalgo F
    Chemosphere; 2020 Apr; 244():125579. PubMed ID: 32050351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.
    Nath M; Yadav S; Kumar Sahoo R; Passricha N; Tuteja R; Tuteja N
    J Plant Physiol; 2016 Feb; 191():1-11. PubMed ID: 26687010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars.
    Chakraborty A; Bhattacharjee S
    J Plant Physiol; 2015 Mar; 176():65-77. PubMed ID: 25588693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the role of organic acids in the bicarbonate tolerance of zinc-efficient rice genotypes.
    Rose MT; Rose TJ; Pariasca-Tanaka J; ; Wissuwa M
    Funct Plant Biol; 2011 Jun; 38(6):493-504. PubMed ID: 32480903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves.
    Shao CH; Qiu CF; Qian YF; Liu GR
    PLoS One; 2020; 15(7):e0235975. PubMed ID: 32649704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice.
    Bandyopadhyay T; Mehra P; Hairat S; Giri J
    Funct Integr Genomics; 2017 Sep; 17(5):565-581. PubMed ID: 28293806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance.
    Wissuwa M; Ismail AM; Yanagihara S
    Plant Physiol; 2006 Oct; 142(2):731-41. PubMed ID: 16905666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings.
    Chen Z; Chen M; Jiang M
    Plant Physiol Biochem; 2017 Feb; 111():179-192. PubMed ID: 27940269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytosiderophore release by wheat genotypes differing in zinc deficiency tolerance grown with Zn-free nutrient solution as affected by salinity.
    Daneshbakhsh B; Khoshgoftarmanesh AH; Shariatmadari H; Cakmak I
    J Plant Physiol; 2013 Jan; 170(1):41-6. PubMed ID: 23122914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance.
    Zhang GY; Liu RR; Zhang CQ; Tang KX; Sun MF; Yan GH; Liu QQ
    PLoS One; 2015; 10(5):e0125870. PubMed ID: 25938231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress.
    Bharti A; Garg N
    Ecotoxicol Environ Saf; 2019 Aug; 178():66-78. PubMed ID: 30999182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.