These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 25239132)
1. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis. Iinuma C; Waki M; Kawakami A; Yamaguchi M; Tomaru U; Sasaki N; Masuda S; Matsui Y; Iwasaki S; Baba T; Kasahara M; Yoshiki T; Paletta D; Herrmann T; Ishizu A Int Immunol; 2015 Feb; 27(2):105-14. PubMed ID: 25239132 [TBL] [Abstract][Full Text] [Related]
2. Defining a novel subset of CD1d-dependent type II natural killer T cells using natural killer cell-associated markers. Singh AK; Rhost S; Löfbom L; Cardell SL Scand J Immunol; 2019 Sep; 90(3):e12794. PubMed ID: 31141185 [TBL] [Abstract][Full Text] [Related]
3. Type II Natural Killer T Cells that Recognize Sterol Carrier Protein 2 Are Implicated in Vascular Inflammation in the Rat Model of Systemic Connective Tissue Diseases. Nishioka Y; Yamaguchi M; Kawakami A; Munehiro M; Masuda S; Tomaru U; Ishizu A Am J Pathol; 2017 Jan; 187(1):176-186. PubMed ID: 27863214 [TBL] [Abstract][Full Text] [Related]
4. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation. Oh K; Byoun OJ; Ham DI; Kim YS; Lee DS Eur J Immunol; 2011 Feb; 41(2):392-402. PubMed ID: 21268009 [TBL] [Abstract][Full Text] [Related]
6. Detection of Autoreactive Type II NKT Cells: A Pilot Study of Comparison Between Healthy Individuals and Patients with Vasculitis. Nishioka Y; Sonoda T; Shida H; Kusunoki Y; Hattanda F; Tanimura S; Uozumi R; Yamada M; Nishibata Y; Masuda S; Nakazawa D; Tomaru U; Atsumi T; Ishizu A Cytometry A; 2018 Nov; 93(11):1157-1164. PubMed ID: 30253046 [TBL] [Abstract][Full Text] [Related]
7. CD1d-Restricted Type II NKT Cells Reactive With Endogenous Hydrophobic Peptides. Nishioka Y; Masuda S; Tomaru U; Ishizu A Front Immunol; 2018; 9():548. PubMed ID: 29599785 [TBL] [Abstract][Full Text] [Related]
8. Resistance to malarial infection is achieved by the cooperation of NK1.1(+) and NK1.1(-) subsets of intermediate TCR cells which are constituents of innate immunity. Mannoor MK; Weerasinghe A; Halder RC; Reza S; Morshed M; Ariyasinghe A; Watanabe H; Sekikawa H; Abo T Cell Immunol; 2001 Aug; 211(2):96-104. PubMed ID: 11591113 [TBL] [Abstract][Full Text] [Related]
9. Immediate antigen-specific effector functions by TCR-transgenic CD8+ NKT cells. Wingender G; Berg M; Jüngerkes F; Diehl L; Sullivan BA; Kronenberg M; Limmer A; Knolle PA Eur J Immunol; 2006 Mar; 36(3):570-82. PubMed ID: 16506291 [TBL] [Abstract][Full Text] [Related]
10. Differential recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell receptors. Pellicci DG; Patel O; Kjer-Nielsen L; Pang SS; Sullivan LC; Kyparissoudis K; Brooks AG; Reid HH; Gras S; Lucet IS; Koh R; Smyth MJ; Mallevaey T; Matsuda JL; Gapin L; McCluskey J; Godfrey DI; Rossjohn J Immunity; 2009 Jul; 31(1):47-59. PubMed ID: 19592275 [TBL] [Abstract][Full Text] [Related]
11. Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor alpha chain. Yasuda N; Masuda K; Tsukui T; Teng A; Ishii Y Vet Immunol Immunopathol; 2009 Dec; 132(2-4):224-31. PubMed ID: 19748683 [TBL] [Abstract][Full Text] [Related]
12. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes. Kadri N; Korpos E; Gupta S; Briet C; Löfbom L; Yagita H; Lehuen A; Boitard C; Holmberg D; Sorokin L; Cardell SL J Immunol; 2012 Apr; 188(7):3138-49. PubMed ID: 22371394 [TBL] [Abstract][Full Text] [Related]
13. Natural killer T cell activation increases iNOS Paul S; Chhatar S; Mishra A; Lal G J Immunother Cancer; 2019 Aug; 7(1):208. PubMed ID: 31387637 [TBL] [Abstract][Full Text] [Related]
15. The hypervariable region 4 (HV4) and position 93 of the α chain modulate CD1d-glycolipid binding of iNKT TCRs. Paletta D; Fichtner AS; Hahn AM; Starick L; Beyersdorf N; Monzon-Casanova E; Mueller TD; Herrmann T Eur J Immunol; 2015 Jul; 45(7):2122-33. PubMed ID: 25900449 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. Eberl G; Lees R; Smiley ST; Taniguchi M; Grusby MJ; MacDonald HR J Immunol; 1999 Jun; 162(11):6410-9. PubMed ID: 10352254 [TBL] [Abstract][Full Text] [Related]
17. Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors. Almeida CF; Sundararaj S; Le Nours J; Praveena T; Cao B; Burugupalli S; Smith DGM; Patel O; Brigl M; Pellicci DG; Williams SJ; Uldrich AP; Godfrey DI; Rossjohn J Nat Commun; 2019 Nov; 10(1):5242. PubMed ID: 31748533 [TBL] [Abstract][Full Text] [Related]
18. NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1d. Kuylenstierna C; Björkström NK; Andersson SK; Sahlström P; Bosnjak L; Paquin-Proulx D; Malmberg KJ; Ljunggren HG; Moll M; Sandberg JK Eur J Immunol; 2011 Jul; 41(7):1913-23. PubMed ID: 21590763 [TBL] [Abstract][Full Text] [Related]
19. Phenotypical and functional alterations during the expansion phase of invariant Valpha14 natural killer T (Valpha14i NKT) cells in mice primed with alpha-galactosylceramide. Ikarashi Y; Iizuka A; Koshidaka Y; Heike Y; Takaue Y; Yoshida M; Kronenberg M; Wakasugi H Immunology; 2005 Sep; 116(1):30-7. PubMed ID: 16108815 [TBL] [Abstract][Full Text] [Related]
20. The ins and outs of type I iNKT cell development. Shissler SC; Webb TJ Mol Immunol; 2019 Jan; 105():116-130. PubMed ID: 30502719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]