These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25239150)

  • 1. Visuospatial referents facilitate the learning and transfer of mathematical operations: extending the role of the angular gyrus.
    Pyke A; Betts S; Fincham JM; Anderson JR
    Cogn Affect Behav Neurosci; 2015 Mar; 15(1):229-50. PubMed ID: 25239150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When math operations have visuospatial meanings versus purely symbolic definitions: Which solving stages and brain regions are affected?
    Pyke AA; Fincham JM; Anderson JR
    Neuroimage; 2017 Jun; 153():319-335. PubMed ID: 28363837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gesture during math instruction specifically benefits learners with high visuospatial working memory capacity.
    Aldugom M; Fenn K; Cook SW
    Cogn Res Princ Implic; 2020 Jun; 5(1):27. PubMed ID: 32519045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: a cytoarchitectonic mapping study.
    Rosenberg-Lee M; Chang TT; Young CB; Wu S; Menon V
    Neuropsychologia; 2011 Jul; 49(9):2592-608. PubMed ID: 21616086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-symbolic and symbolic notations in simple arithmetic differentially involve intraparietal sulcus and angular gyrus activity.
    van der Ven F; Takashima A; Segers E; Fernández G; Verhoeven L
    Brain Res; 2016 Jul; 1643():91-102. PubMed ID: 27117869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interference effect in arithmetic fact solving: An fMRI study.
    De Visscher A; Berens SC; Keidel JL; Noël MP; Bird CM
    Neuroimage; 2015 Aug; 116():92-101. PubMed ID: 25959661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning by strategies and learning by drill--evidence from an fMRI study.
    Delazer M; Ischebeck A; Domahs F; Zamarian L; Koppelstaetter F; Siedentopf CM; Kaufmann L; Benke T; Felber S
    Neuroimage; 2005 Apr; 25(3):838-49. PubMed ID: 15808984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fact learning in complex arithmetic and figural-spatial tasks: the role of the angular gyrus and its relation to mathematical competence.
    Grabner RH; Ischebeck A; Reishofer G; Koschutnig K; Delazer M; Ebner F; Neuper C
    Hum Brain Mapp; 2009 Sep; 30(9):2936-52. PubMed ID: 19172644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study.
    Andres M; Pelgrims B; Michaux N; Olivier E; Pesenti M
    Neuroimage; 2011 Feb; 54(4):3048-56. PubMed ID: 21073958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct intracranial recordings in the human angular gyrus during arithmetic processing.
    Pinheiro-Chagas P; Chen F; Sabetfakhri N; Perry C; Parvizi J
    Brain Struct Funct; 2023 Jan; 228(1):305-319. PubMed ID: 35907987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous and nonlinear development of human posterior parietal cortex function.
    Chang TT; Metcalfe AW; Padmanabhan A; Chen T; Menon V
    Neuroimage; 2016 Feb; 126():184-95. PubMed ID: 26655682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing visuospatial working memory and complex mental calculation areas within the parietal lobes.
    Zago L; Tzourio-Mazoyer N
    Neurosci Lett; 2002 Oct; 331(1):45-9. PubMed ID: 12359320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of common neural representations for distinct numerical problems.
    Chang TT; Rosenberg-Lee M; Metcalfe AW; Chen T; Menon V
    Neuropsychologia; 2015 Aug; 75():481-95. PubMed ID: 26160287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What difference does a year of schooling make? Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic problem solving.
    Rosenberg-Lee M; Barth M; Menon V
    Neuroimage; 2011 Aug; 57(3):796-808. PubMed ID: 21620984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Semantic System Supports the Processing of Mathematical Principles.
    Liu J; Yuan L; Chen C; Cui J; Zhang H; Zhou X
    Neuroscience; 2019 Apr; 404():102-118. PubMed ID: 30710668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG correlation during the solving of simple and complex logical-mathematical problems.
    Molina Del Río J; Guevara MA; Hernández González M; Hidalgo Aguirre RM; Cruz Aguilar MA
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):1036-1046. PubMed ID: 30790182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative modelling demonstrates format-invariant representations of mathematical problems in the brain.
    Nakai T; Nishimoto S
    Eur J Neurosci; 2023 Mar; 57(6):1003-1017. PubMed ID: 36710081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common substrate for mental arithmetic and finger representation in the parietal cortex.
    Andres M; Michaux N; Pesenti M
    Neuroimage; 2012 Sep; 62(3):1520-8. PubMed ID: 22634854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fronto-insular-parietal network engagement underlying arithmetic word problem solving.
    Chang TT; Lung TC; Ng CT; Metcalfe AWS
    Hum Brain Mapp; 2019 Apr; 40(6):1927-1941. PubMed ID: 30565340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns.
    Anderson JR; Betts S; Ferris JL; Fincham JM
    Cogn Affect Behav Neurosci; 2011 Mar; 11(1):52-67. PubMed ID: 21264650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.