BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25239231)

  • 21. Planktonic Marine Archaea.
    Santoro AE; Richter RA; Dupont CL
    Ann Rev Mar Sci; 2019 Jan; 11():131-158. PubMed ID: 30212260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments.
    Pitcher A; Hopmans EC; Mosier AC; Park SJ; Rhee SK; Francis CA; Schouten S; Damsté JS
    Appl Environ Microbiol; 2011 May; 77(10):3468-77. PubMed ID: 21441324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon.
    Ingalls AE; Shah SR; Hansman RL; Aluwihare LI; Santos GM; Druffel ER; Pearson A
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6442-7. PubMed ID: 16614070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum.
    Nishihara M; Morii H; Koga Y
    J Biochem; 1987 Apr; 101(4):1007-15. PubMed ID: 3611039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Marine planktonic archaea take up amino acids.
    Ouverney CC; Fuhrman JA
    Appl Environ Microbiol; 2000 Nov; 66(11):4829-33. PubMed ID: 11055931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of single-cell genomics to our understanding of planktonic marine archaea.
    Santoro AE; Kellom M; Laperriere SM
    Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1786):20190096. PubMed ID: 31587640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Archaeal tetraether bipolar lipids: Structures, functions and applications.
    Jacquemet A; Barbeau J; Lemiègre L; Benvegnu T
    Biochimie; 2009 Jun; 91(6):711-7. PubMed ID: 19455744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile distinction of neutral and acidic tetraether lipids in archaea membrane by halogen atom adduct ions in electrospray ionization mass spectrometry.
    Murae T; Takamatsu Y; Muraoka R; Endoh S; Yamauchi N
    J Mass Spectrom; 2002 Feb; 37(2):209-15. PubMed ID: 11857765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing.
    Lin YS; Lipp JS; Elvert M; Holler T; Hinrichs KU
    Environ Microbiol; 2013 May; 15(5):1634-46. PubMed ID: 23033882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota.
    Deschamps P; Zivanovic Y; Moreira D; Rodriguez-Valera F; López-García P
    Genome Biol Evol; 2014 Jun; 6(7):1549-63. PubMed ID: 24923324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetraether membrane lipids of Candidatus "Aciduliprofundum boonei", a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents.
    Schouten S; Baas M; Hopmans EC; Reysenbach AL; Damsté JS
    Extremophiles; 2008 Jan; 12(1):119-24. PubMed ID: 17901915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subseafloor Archaea reflect 139 kyrs of paleodepositional changes in the northern Red Sea.
    More KD; Wuchter C; Irigoien X; Tierney JE; Giosan L; Grice K; Coolen MJL
    Geobiology; 2021 Mar; 19(2):162-172. PubMed ID: 33274598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column.
    Sollai M; Villanueva L; Hopmans EC; Reichart GJ; Sinninghe Damsté JS
    Geobiology; 2019 Jan; 17(1):91-109. PubMed ID: 30281902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event.
    Kuypers MM; Blokker P; Erbacher J; Kinkel H; Pancost RD; Schouten S; Sinninghe Damste JS
    Science; 2001 Jul; 293(5527):92-5. PubMed ID: 11441180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle.
    Van Mooy BA; Krupke A; Dyhrman ST; Fredricks HF; Frischkorn KR; Ossolinski JE; Repeta DJ; Rouco M; Seewald JD; Sylva SP
    Science; 2015 May; 348(6236):783-5. PubMed ID: 25977548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin).
    Lengger SK; Hopmans EC; Sinninghe Damsté JS; Schouten S
    Geobiology; 2014 May; 12(3):212-20. PubMed ID: 24612345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating Production of Cyclopentyl Tetraethers by Marine Group II
    Wang JX; Xie W; Zhang YG; Meador TB; Zhang CL
    Front Microbiol; 2017; 8():2077. PubMed ID: 29163386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tetraether lipids of Methanospirillum hungatei with head groups consisting of phospho-N,N-dimethylaminopentanetetrol, phospho-N,N,N-trimethylaminopentanetetrol, and carbohydrates.
    Sprott GD; Ferrante G; Ekiel I
    Biochim Biophys Acta; 1994 Oct; 1214(3):234-42. PubMed ID: 7918605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental factors shaping the archaeal community structure and ether lipid distribution in a subtropic river and estuary, China.
    Guo W; Xie W; Li X; Wang P; Hu A; Zhang CL
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):461-474. PubMed ID: 29103169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation.
    Xie W; Luo H; Murugapiran SK; Dodsworth JA; Chen S; Sun Y; Hedlund BP; Wang P; Fang H; Deng M; Zhang CL
    Environ Microbiol; 2018 Feb; 20(2):734-754. PubMed ID: 29235710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.