BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25239232)

  • 1. Are Marine Group II Euryarchaeota significant contributors to tetraether lipids in the ocean?
    Schouten S; Villanueva L; Hopmans EC; van der Meer MT; Sinninghe Damsté JS
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):E4285. PubMed ID: 25239232
    [No Abstract]   [Full Text] [Related]  

  • 2. Reply to Schouten et al.: Marine Group II planktonic Euryarchaeota are significant contributors to tetraether lipids in the ocean.
    Lincoln SA; Wai B; Eppley JM; Church MJ; Summons RE; DeLong EF
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):E4286. PubMed ID: 25239231
    [No Abstract]   [Full Text] [Related]  

  • 3. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean.
    Lincoln SA; Wai B; Eppley JM; Church MJ; Summons RE; DeLong EF
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9858-63. PubMed ID: 24946804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea.
    Besseling MA; Hopmans EC; Bale NJ; Schouten S; Damsté JSS; Villanueva L
    Sci Rep; 2020 Jan; 10(1):294. PubMed ID: 31941956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.
    Zhu C; Wakeham SG; Elling FJ; Basse A; Mollenhauer G; Versteegh GJ; Könneke M; Hinrichs KU
    Environ Microbiol; 2016 Dec; 18(12):4324-4336. PubMed ID: 26950522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean.
    Herndl GJ; Reinthaler T; Teira E; van Aken H; Veth C; Pernthaler A; Pernthaler J
    Appl Environ Microbiol; 2005 May; 71(5):2303-9. PubMed ID: 15870315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes.
    DeLong EF; King LL; Massana R; Cittone H; Murray A; Schleper C; Wakeham SG
    Appl Environ Microbiol; 1998 Mar; 64(3):1133-8. PubMed ID: 9501451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates.
    McCartney CA; Dewhurst RJ; Bull ID
    J Anim Sci; 2014 Sep; 92(9):4095-8. PubMed ID: 25085398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below.
    Edgcomb VP
    Curr Opin Microbiol; 2016 Jun; 31():169-175. PubMed ID: 27092409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent.
    Nishihara M; Koga Y
    J Biochem; 1987 Apr; 101(4):997-1005. PubMed ID: 3611047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of ether lipids specific to Archaea].
    Koga Y
    Tanpakushitsu Kakusan Koso; 1993 Aug; 38(10):1566-74. PubMed ID: 8372232
    [No Abstract]   [Full Text] [Related]  

  • 12. Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters.
    Ma C; Coffinet S; Lipp JS; Hinrichs KU; Zhang C
    Front Microbiol; 2020; 11():1034. PubMed ID: 32582055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple chromatographic procedure for the detection of cyclized archaebacterial glycerol-bisdiphytanyl-glycerol tetraether core lipids.
    Trincone A; De Rosa M; Gambacorta A; Lanzotti V; Nicolaus B; Harris JE; Grant WD
    J Gen Microbiol; 1988 Dec; 134(12):3159-63. PubMed ID: 3151990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-fracture planes of methanogen membranes correlate with the content of tetraether lipids.
    Beveridge TJ; Choquet CG; Patel GB; Sprott GD
    J Bacteriol; 1993 Feb; 175(4):1191-7. PubMed ID: 8432712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton.
    Georges AA; El-Swais H; Craig SE; Li WK; Walsh DA
    ISME J; 2014 Jun; 8(6):1301-13. PubMed ID: 24401863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments.
    Pitcher A; Hopmans EC; Mosier AC; Park SJ; Rhee SK; Francis CA; Schouten S; Damsté JS
    Appl Environ Microbiol; 2011 May; 77(10):3468-77. PubMed ID: 21441324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon.
    Ingalls AE; Shah SR; Hansman RL; Aluwihare LI; Santos GM; Druffel ER; Pearson A
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6442-7. PubMed ID: 16614070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum.
    Nishihara M; Morii H; Koga Y
    J Biochem; 1987 Apr; 101(4):1007-15. PubMed ID: 3611039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planktonic Archaeal Ether Lipid Origins in Surface Waters of the North Pacific Subtropical Gyre.
    Li F; Leu A; Poff K; Carlson LT; Ingalls AE; DeLong EF
    Front Microbiol; 2021; 12():610675. PubMed ID: 34589060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions.
    Martin-Cuadrado AB; Rodriguez-Valera F; Moreira D; Alba JC; Ivars-Martínez E; Henn MR; Talla E; López-García P
    ISME J; 2008 Aug; 2(8):865-86. PubMed ID: 18463691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.