BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2523942)

  • 21. Development of ATPase-positive, immature Langerhans cells in the fetal mouse epidermis and their maturation during the early postnatal period.
    Kobayashi M; Asano H; Fujita Y; Hoshino T
    Cell Tissue Res; 1987 May; 248(2):315-22. PubMed ID: 2953426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human epidermal Langerhans cells internalize by receptor-mediated endocytosis T6 (CD1 "NA1/34") surface antigen. Birbeck granules are involved in the intracellular traffic of the T6 antigen.
    Hanau D; Fabre M; Schmitt DA; Stampf JL; Garaud JC; Bieber T; Grosshans E; Benezra C; Cazenave JP
    J Invest Dermatol; 1987 Aug; 89(2):172-7. PubMed ID: 3110299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Langerhans-like cells in amphibian epidermis.
    Carrillo-Farga J; Castell A; Pérez A; Rondán A
    J Anat; 1990 Oct; 172():39-45. PubMed ID: 2148747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EDTA separation and ATPase Langerhans cell staining in the mouse epidermis.
    Baker KW; Habowsky JE
    J Invest Dermatol; 1983 Feb; 80(2):104-7. PubMed ID: 6218208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of suppressor T cells to DNFB contact sensitivity by application of sensitizer through Langerhans cell-deficient skin.
    Semma M; Sagami S
    Arch Dermatol Res; 1981; 271(3):361-4. PubMed ID: 6458249
    [No Abstract]   [Full Text] [Related]  

  • 26. ATP-ase activity in the human oral mucous membrane, the guinea pig and the rabbit epidermis. A light- and electronmicroscopical investigation.
    Zelander T; Kirkeby S
    Anat Anz; 1984; 155(1-5):389-98. PubMed ID: 6232869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Langerhans cells in the developing mucosal epithelium of mice.
    Kotani H; Kobayashi M; Niwa J; Kaneda T; Hoshino T
    Arch Histol Cytol; 1991 Mar; 54(1):51-8. PubMed ID: 1828163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB.
    Toews GB; Bergstresser PR; Streilein JW
    J Immunol; 1980 Jan; 124(1):445-53. PubMed ID: 6153101
    [No Abstract]   [Full Text] [Related]  

  • 29. Deleterious effects of cis-urocanic acid and UVB radiation on Langerhans cells and on induction of contact hypersensitivity are mediated by tumor necrosis factor-alpha.
    Kurimoto I; Streilein JW
    J Invest Dermatol; 1992 Nov; 99(5):69S-70S. PubMed ID: 1431236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scanning electron microscope histochemistry: the use of backscattered electrons to identify epidermal Langerhans cells in the scanning electron microscope.
    Newcomb GM; Boyde A
    Histochem J; 1980 Nov; 12(6):695-700. PubMed ID: 6449492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential effects of benzo[a]pyrene and dimethylbenz[a]-anthracene on Langerhans cell distribution and contact sensitization in murine epidermis.
    Ruby JC; Halliday GM; Muller HK
    J Invest Dermatol; 1989 Feb; 92(2):150-5. PubMed ID: 2493054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contact sensitizers modulate mechanisms of receptor-mediated endocytosis but not fluid-phase endocytosis in murine epidermal Langerhans cells.
    Becker D; Lempertz U; Enk A; Saloga J; Knop J
    Exp Dermatol; 1995 Aug; 4(4 Pt 1):211-7. PubMed ID: 8535616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells.
    Stössel H; Koch F; Kämpgen E; Stöger P; Lenz A; Heufler C; Romani N; Schuler G
    J Exp Med; 1990 Nov; 172(5):1471-82. PubMed ID: 2230653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significant changes in epidermal Langerhans cells of guinea-pigs infested with ticks (Dermacentor andersoni).
    Nithiuthai S; Allen JR
    Immunology; 1984 Jan; 51(1):133-41. PubMed ID: 6228517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional human epidermal Langerhans cells that lack Birbeck granules.
    Mommaas M; Mulder A; Vermeer BJ; Koning F
    J Invest Dermatol; 1994 Dec; 103(6):807-10. PubMed ID: 7798619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time course of contact hypersensitivity to DNFB and histologic findings in mice.
    Cho GY; Hough W
    J Korean Med Sci; 1986 Sep; 1(1):31-6. PubMed ID: 3269235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epicutaneous induction of hyporeactivity in contact sensitization. Demonstration of suppressor cells induced by contact with 2,4-dinitrothiocyanatebenzene.
    Sommer G; Parker D; Turk JL
    Immunology; 1975 Sep; 29(3):517-25. PubMed ID: 1080744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitization through carcinogen-induced Langerhans cell-deficient skin activates specific long-lived suppressor cells for both cellular and humoral immunity.
    Halliday GM; Muller HK
    Cell Immunol; 1987 Oct; 109(1):206-21. PubMed ID: 2958141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical carcinogens and antigens induce immune suppression via Langerhans' cell depletion.
    Woods GM; Qu M; Ragg SJ; Muller HK
    Immunology; 1996 May; 88(1):134-9. PubMed ID: 8707340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact hypersensitivity reactions to dinitrofluorobenzene mediated by monoclonal IgE anti-DNP antibodies.
    Ray MC; Tharp MD; Sullivan TJ; Tigelaar RE
    J Immunol; 1983 Sep; 131(3):1096-102. PubMed ID: 6193174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.