These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 25239605)

  • 21. Behavioral Teleporting of Individual Ethograms onto Inanimate Robots: Experiments on Social Interactions in Live Zebrafish.
    Karakaya M; Macrì S; Porfiri M
    iScience; 2020 Aug; 23(8):101418. PubMed ID: 32818837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prey tracking by larval zebrafish: axial kinematics and visual control.
    McElligott MB; O'malley DM
    Brain Behav Evol; 2005; 66(3):177-96. PubMed ID: 16088102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish.
    Ladu F; Bartolini T; Panitz SG; Chiarotti F; Butail S; Macrì S; Porfiri M
    Zebrafish; 2015 Jun; 12(3):205-14. PubMed ID: 25734228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute caffeine administration affects zebrafish response to a robotic stimulus.
    Ladu F; Mwaffo V; Li J; Macrì S; Porfiri M
    Behav Brain Res; 2015 Aug; 289():48-54. PubMed ID: 25907748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High fidelity: Assessing zebrafish (Danio rerio) responses to social stimuli across several levels of realism.
    Velkey AJ; Boles J; Betts TK; Kay H; Henenlotter R; Wiens KM
    Behav Processes; 2019 Jul; 164():100-108. PubMed ID: 31022508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cartilage structure increases swimming efficiency of underwater robots.
    Yurugi M; Shimanokami M; Nagai T; Shintake J; Ikemoto Y
    Sci Rep; 2021 May; 11(1):11288. PubMed ID: 34050230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biologically inspired swimming robotic frog based on pneumatic soft actuators.
    Jizhuang F; Qilong D; Qingguo Y; Yi W; Jiaming Q; Yanhe Z
    Bioinspir Biomim; 2020 May; 15(4):046006. PubMed ID: 32209752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Octopus-inspired multi-arm robotic swimming.
    Sfakiotakis M; Kazakidi A; Tsakiris DP
    Bioinspir Biomim; 2015 May; 10(3):035005. PubMed ID: 25970151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated visual tracking for studying the ontogeny of zebrafish swimming.
    Fontaine E; Lentink D; Kranenbarg S; Müller UK; van Leeuwen JL; Barr AH; Burdick JW
    J Exp Biol; 2008 Apr; 211(Pt 8):1305-16. PubMed ID: 18375855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle.
    Wang R; Zhang C; Zhang Y; Yang L; Tan W; Qin H; Wang F; Liu L
    Soft Robot; 2024 Feb; ():. PubMed ID: 38407844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test.
    Kopman V; Laut J; Polverino G; Porfiri M
    J R Soc Interface; 2013 Jan; 10(78):20120540. PubMed ID: 23152102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Swimming near the substrate: a simple robotic model of stingray locomotion.
    Blevins E; Lauder GV
    Bioinspir Biomim; 2013 Mar; 8(1):016005. PubMed ID: 23318215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactive robots in experimental biology.
    Krause J; Winfield AF; Deneubourg JL
    Trends Ecol Evol; 2011 Jul; 26(7):369-75. PubMed ID: 21496942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A magnetically controlled soft miniature robotic fish with a flexible skeleton inspired by zebrafish.
    Huang C; Lai Z; Zhang L; Wu X; Xu T
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34479217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-based feedback control of live zebrafish behavior via interaction with a robotic replica.
    DeLellis P; Cadolini E; Croce A; Yang Y; di Bernardo M; Porfiri M
    IEEE Trans Robot; 2020 Feb; 36(1):28-41. PubMed ID: 33746643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.
    Cianchetti M; Calisti M; Margheri L; Kuba M; Laschi C
    Bioinspir Biomim; 2015 May; 10(3):035003. PubMed ID: 25970014
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.