These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25240)
1. Molecular basis for the temperature-dependent insolubility of cryoglobulins--IV. Structural studies of the IgM monoclonal cryoglobulin McE. Middaugh CR; Kehoe JM; Prystowsky MB; Gerber-Jenson B; Jenson JC; Litman GW Immunochemistry; 1978 Mar; 15(3):171-87. PubMed ID: 25240 [No Abstract] [Full Text] [Related]
2. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. II. Spectroscopic studies of the IgM monoclonal cryoglobulin McE. Middaugh CR; Thomas GJ; Prescott B; Aberlin ME; Litman GW Biochemistry; 1977 Jun; 16(13):2986-94. PubMed ID: 880291 [No Abstract] [Full Text] [Related]
3. Molecular basis for the temperature-dependent insolubility of cryoglobulins--IX. Physicochemical characterization of an IgG1, kappa monoclonal cryoimmunoglobulin exhibiting marginal low temperature-dependent insolubility. Litman GW; Gerber-Jenson B; Litman R; Middaugh CR; Scheffel C Mol Immunol; 1980 Mar; 17(3):337-44. PubMed ID: 6777663 [No Abstract] [Full Text] [Related]
4. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. VI. Quenching by acrylamide of the intrinsic tryptophan fluorescence of cryoglobulin and non-cryoglobulin IgM proteins. Middaugh CR; Litman GW Biochim Biophys Acta; 1978 Jul; 535(1):33-43. PubMed ID: 667117 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical characterization of six monoclonal cryoimmunoglobulins: possible basis for cold-dependent insolubility. Middaugh CR; Gerber-Jenson B; Hurvitz A; Paluszek A; Scheffel C; Litman GW Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3440-4. PubMed ID: 28525 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis for the temperature-dependent insolubility of cryoglobulins. X. The amino acid sequence of the heavy chain variable region of McE. Gerber-Jenson B; Kazin A; Kehoe JM; Scheffel C; Erickson BW; Litman GW J Immunol; 1981 Mar; 126(3):1212-6. PubMed ID: 6780622 [TBL] [Abstract][Full Text] [Related]
7. Localization of a conformational anomaly to the Fabmu region of a monoclonal IgM cryoglobulin. Middaugh CR; Oshman RG; Litman GW Clin Exp Immunol; 1978 Jan; 31(1):126-30. PubMed ID: 416930 [TBL] [Abstract][Full Text] [Related]
8. Effect of solutes on the cold-induced insolubility of monoclonal cryoimmunoglobulins. Middaugh CR; Litman GW J Biol Chem; 1977 Nov; 252(22):8002-6. PubMed ID: 914859 [TBL] [Abstract][Full Text] [Related]
9. [Immunochemical study of 130 human cryoglobulins]. Klein M; Danon F; Brouet JC; Signoret Y; Seligmann M Rev Eur Etud Clin Biol; 1972 Dec; 17(10):948-57. PubMed ID: 4659995 [No Abstract] [Full Text] [Related]
10. Molecular basis for the temperature-dependent insolubility of cryoglobulins--XI. Sequence comparison of the heavy-chain variable regions of the human cryoimmunoglobulins McE and Hil by metric analysis. Erickson BW; Gerber-Jenson B; Wang AC; Litman GW Mol Immunol; 1982 Mar; 19(3):357-65. PubMed ID: 6808354 [TBL] [Abstract][Full Text] [Related]
11. [The role of intermolecular electrostatic cooperative interactions causing cryoprecipitation of human monoclonal immunoglobin M]. Kosarev IV; Surovtsev VI; Zav'ialov VP Bioorg Khim; 1985 Jun; 11(6):745-52. PubMed ID: 3929795 [TBL] [Abstract][Full Text] [Related]
12. Raman spectra and conformational structures of Fab mu and (Fc)5 mu fragments of cryoglobulin IgM-kappa McE. Thomas GJ; Prescott B; Middaugh CR; Litman GW Biochim Biophys Acta; 1979 Apr; 577(2):285-90. PubMed ID: 110353 [TBL] [Abstract][Full Text] [Related]
13. Effect of D2O on the temperature-dependent solubility of cryoglobulin and noncryoglobulin IgM. Middaugh CR; Litman GW FEBS Lett; 1977 Jul; 79(1):200-2. PubMed ID: 891928 [No Abstract] [Full Text] [Related]
14. Amino acid composition of the mu chains of IgM of normal serum, monoclonal cryoglobulin and Waldenstrom macroglobulin. Tomaszewski J; Woźniak K; Kimak E Acta Biochim Pol; 1980; 27(3-4):295-301. PubMed ID: 6791421 [TBL] [Abstract][Full Text] [Related]
15. [Immunochemical study of a mixed IgG-IgM cryoglobulin with monoclonal IgM]. Scolari L; Masala C Folia Allergol (Roma); 1971; 18(2):177-81. PubMed ID: 5000063 [No Abstract] [Full Text] [Related]
16. [Immunochemical study of IgG-IgM mixed cryoglobulin with IgM of a monoclonal type]. Scolari L; Miliani A; Masala C; Di Guglielmo R Riv Emoter Immunoematol; 1970; 17(3):69-78. PubMed ID: 5003516 [No Abstract] [Full Text] [Related]
17. The switch point in mu heavy chains of human IgM immunoglobulins. Florent G; Lehman D; Putnam FW Biochemistry; 1974 Jun; 13(12):2482-98. PubMed ID: 4208843 [No Abstract] [Full Text] [Related]
18. Immunochemical studies of four human IgM pyroglobulins. Klein M Immunochemistry; 1973 Oct; 10(10):673-80. PubMed ID: 4202954 [No Abstract] [Full Text] [Related]
19. [Conformation changes in the mechanism of cryoprecipitation of human monoclonal immunoglobulin M]. Surovtsev VI; Kosarev IV; Mogutnova VA; Riazantsev SN; Sukhomudrenko AG Biokhimiia; 1987 Dec; 52(12):1965-76. PubMed ID: 3447628 [TBL] [Abstract][Full Text] [Related]
20. In vitro reactivity of cryoglobulin IgM and IgG in hepatitis C virus-associated mixed cryoglobulinemia. Schott P; Polzien F; Müller-Issberner A; Ramadori G; Hartmann H J Hepatol; 1998 Jan; 28(1):17-26. PubMed ID: 9537859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]