BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25240129)

  • 1. Discovery of the unique self-assembly behavior of terminal suckers-contained dsDNA onto GNP and novel "light-up" colorimetric assay of nucleic acids.
    Qiu L; Shen Z; Wu ZS; Shen GL; Yu R
    Biosens Bioelectron; 2015 Feb; 64():292-9. PubMed ID: 25240129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of target binding on hairpin aptamer sticky-end pairing-induced gold nanoparticle assembly for light-up colorimetric protein assay.
    Wu ZS; Lu H; Liu X; Hu R; Zhou H; Shen G; Yu RQ
    Anal Chem; 2010 May; 82(9):3890-8. PubMed ID: 20394414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.
    Xie X; Xu W; Liu X
    Acc Chem Res; 2012 Sep; 45(9):1511-20. PubMed ID: 22786666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric immunosensing via protein functionalized gold nanoparticle probe combined with atom transfer radical polymerization.
    Shi H; Yuan L; Wu Y; Liu S
    Biosens Bioelectron; 2011 May; 26(9):3788-93. PubMed ID: 21454068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H; Wang Y; Jin J; Yang R
    Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric detection of UV light-induced single-strand DNA breaks using gold nanoparticles.
    Kim JH; Chung CH; Chung BH
    Analyst; 2013 Feb; 138(3):783-6. PubMed ID: 23238018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay.
    Wu Z; Wu ZK; Tang H; Tang LJ; Jiang JH
    Anal Chem; 2013 May; 85(9):4376-83. PubMed ID: 23544713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements.
    Tan YN; Su X; Zhu Y; Lee JY
    ACS Nano; 2010 Sep; 4(9):5101-10. PubMed ID: 20704275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.
    Li S; Shang X; Liu J; Wang Y; Guo Y; You J
    Anal Biochem; 2017 Jul; 528():47-52. PubMed ID: 28442309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzyme-free and amplified colorimetric detection strategy: assembly of gold nanoparticles through target-catalytic circuits.
    Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; Wang K
    Analyst; 2015 Feb; 140(4):1004-7. PubMed ID: 25562066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis.
    Deng H; Zhang X; Kumar A; Zou G; Zhang X; Liang XJ
    Chem Commun (Camb); 2013 Jan; 49(1):51-3. PubMed ID: 23145437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors.
    Zhao W; Lam JC; Chiuman W; Brook MA; Li Y
    Small; 2008 Jun; 4(6):810-6. PubMed ID: 18537135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Gold Nanoparticle Colorimetric Assay by Nanoparticle Size, Concentration, and Size Combinations for Oligonucleotide Detection.
    Godakhindi VS; Kang P; Serre M; Revuru NA; Zou JM; Roner MR; Levitz R; Kahn JS; Randrianalisoa J; Qin Z
    ACS Sens; 2017 Nov; 2(11):1627-1636. PubMed ID: 28994578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence.
    Deng H; Xu Y; Liu Y; Che Z; Guo H; Shan S; Sun Y; Liu X; Huang K; Ma X; Wu Y; Liang XJ
    Anal Chem; 2012 Feb; 84(3):1253-8. PubMed ID: 22243128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid.
    Wen J; Chen J; Zhuang L; Zhou S
    Biosens Bioelectron; 2016 May; 79():656-60. PubMed ID: 26765529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes.
    Wang Y; Yang F; Yang X
    Nanotechnology; 2010 May; 21(20):205502. PubMed ID: 20418604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide.
    Li C; Wei L; Liu X; Lei L; Li G
    Anal Chim Acta; 2014 Jun; 831():60-4. PubMed ID: 24861972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic acid-regulated perylene probe-induced gold nanoparticle aggregation: a new strategy for colorimetric sensing of alkaline phosphatase activity and inhibitor screening.
    Jiao H; Chen J; Li W; Wang F; Zhou H; Li Y; Yu C
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1979-85. PubMed ID: 24417549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles.
    Fu Z; Zhou X; Xing D
    Methods; 2013 Dec; 64(3):260-6. PubMed ID: 23948710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y; Hosokawa K; Maeda M
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):71-6. PubMed ID: 17976962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.