These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25240320)

  • 1. Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus.
    Higuchi M; Yoshihashi Y; Tarada K; Sugano K
    Eur J Pharm Sci; 2014 Dec; 65():74-8. PubMed ID: 25240320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of coning phenomena for irregular particles in paddle dissolution test.
    Higuchi M; Nishida S; Yoshihashi Y; Tarada K; Sugano K
    Eur J Pharm Sci; 2015 Aug; 76():213-6. PubMed ID: 25998150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coning phenomena under laminar flow.
    Higuchi M; Terada K; Sugano K
    Eur J Pharm Sci; 2015 Dec; 80():53-5. PubMed ID: 26296866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities.
    McCarthy LG; Bradley G; Sexton JC; Corrigan OI; Healy AM
    AAPS PharmSciTech; 2004 Apr; 5(2):e31. PubMed ID: 15760089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Evaluation of Dissolution Performance in a USP 2 Setup and Alternative Stirrers and Vessel Designs: A Systematic Computational Investigation.
    Salehi N; Al-Gousous J; Hens B; Amidon GL; Ziff RM; Amidon GE
    Mol Pharm; 2024 May; 21(5):2406-2414. PubMed ID: 38639477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.
    Sheng JJ; Sirois PJ; Dressman JB; Amidon GL
    J Pharm Sci; 2008 Nov; 97(11):4815-29. PubMed ID: 18314890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Models for USP2 Dissolution Apparatus, Including Fluid Hydrodynamics and Sedimentation.
    Pepin X; Goetschy M; Abrahmsén-Alami S
    J Pharm Sci; 2022 Jan; 111(1):185-196. PubMed ID: 34666045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Apex Size on Dissolution Profiles in the USP II Paddle Apparatus.
    Yoshida H; Morita T; Abe Y; Inagaki A; Tomita N; Izutsu KI; Sato Y
    AAPS PharmSciTech; 2023 Dec; 25(1):9. PubMed ID: 38158516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of sinkers on coning issues exhibited by tablets in USP2 dissolution apparatus.
    Terashima H; Ozeki T
    Int J Pharm; 2024 Jun; 659():124236. PubMed ID: 38768693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics--dissolution rate implications.
    D'Arcy DM; Corrigan OI; Healy AM
    Eur J Pharm Sci; 2006 Feb; 27(2-3):259-67. PubMed ID: 16314078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniaturization of powder dissolution measurement and estimation of particle size.
    Avdeef A; Tsinman K; Tsinman O; Sun N; Voloboy D
    Chem Biodivers; 2009 Nov; 6(11):1796-811. PubMed ID: 19937817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The random vibration effects on dissolution testing with USP apparatus 2.
    Gao Z; Moore TW; Buhse LF; Doub WH
    J Pharm Sci; 2009 Jan; 98(1):297-306. PubMed ID: 18399543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs.
    Yu LX; Carlin AS; Amidon GL; Hussain AS
    Int J Pharm; 2004 Feb; 270(1-2):221-7. PubMed ID: 14726137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A better dissolution method for ranitidine tablets USP.
    Cappola ML
    Pharm Dev Technol; 2001; 6(1):11-7. PubMed ID: 11247270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution testing of powders for inhalation: influence of particle deposition and modeling of dissolution profiles.
    May S; Jensen B; Weiler C; Wolkenhauer M; Schneider M; Lehr CM
    Pharm Res; 2014 Nov; 31(11):3211-24. PubMed ID: 24852894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of agitation force in dissolution test and mechanical destructive force in disintegration test.
    Kamba M; Seta Y; Takeda N; Hamaura T; Kusai A; Nakane H; Nishimura K
    Int J Pharm; 2003 Jan; 250(1):99-109. PubMed ID: 12480276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability.
    D'Arcy DM; Corrigan OI; Healy AM
    J Pharm Pharmacol; 2005 Oct; 57(10):1243-50. PubMed ID: 16259752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of microviscometry to study polymer dissolution from solid dispersion drug delivery systems.
    Esnaashari S; Javadzadeh Y; Batchelor HK; Conway BR
    Int J Pharm; 2005 Mar; 292(1-2):227-30. PubMed ID: 15725569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A crescent-shaped spindle for improved dissolution testing.
    Qureshi SA
    Pharmeur Bio Sci Notes; 2009 Oct; 2009(1):55-65. PubMed ID: 20144452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of variability in dissolution testing with USP apparatus 2.
    Gao Z; Moore TW; Smith AP; Doub WH; Westenberger BJ
    J Pharm Sci; 2007 Jul; 96(7):1794-801. PubMed ID: 17252609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.