BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25240398)

  • 1. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replica Exchange Molecular Dynamics of Diphenylalanine Amyloid Peptides in Electric Fields.
    Narayan B; Herbert C; Rodriguez BJ; Brooks BR; Buchete NV
    J Phys Chem B; 2021 May; 125(20):5233-5242. PubMed ID: 33990140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial Aggregation and Ordering Mechanism of Diphenylalanine from Microsecond All-Atom Molecular Dynamics Simulations.
    Anderson J; Lake PT; McCullagh M
    J Phys Chem B; 2018 Dec; 122(51):12331-12341. PubMed ID: 30511861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of diphenylalanine peptides on graphene
    Rissanou AN; Keliri A; Arnittali M; Harmandaris V
    Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the Biodegradability of Piezoelectric Peptide Nanotubes Integrated with Hydrophobic Porphyrin.
    Kim Y; Park H; Kim Y; Lee C; Park H; Lee JH
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38778-38785. PubMed ID: 35983899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Chloride Anions on the Formation of Self-Assembled Diphenylalanine Peptide Nanotubes.
    Dayarian S; Kopyl S; Bystrov V; Correia MR; Ivanov MS; Pelegova E; Kholkin A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1563-1570. PubMed ID: 29994474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired peptide nanostructures for organic field-effect transistors.
    Cipriano T; Knotts G; Laudari A; Bianchi RC; Alves WA; Guha S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21408-15. PubMed ID: 25376495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Assembly of Peptide-Based Hierarchical Nanostructures and Their Antiferroelectric Properties.
    Lee Y; Kim KW; Duong NX; Park H; Park J; Ahn CW; Park IW; Jang SC; Kim DH; Lee M; Chung WJ; Kim TH; Lee H; Heo K
    Small; 2020 Nov; 16(45):e2003986. PubMed ID: 33078539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.