These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 25240608)
1. Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Moschet C; Vermeirssen ELM; Seiz R; Pfefferli H; Hollender J Water Res; 2014 Dec; 66():411-422. PubMed ID: 25240608 [TBL] [Abstract][Full Text] [Related]
2. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid-liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Rösch A; Beck B; Hollender J; Singer H Anal Bioanal Chem; 2019 May; 411(14):3151-3164. PubMed ID: 31011779 [TBL] [Abstract][Full Text] [Related]
3. A simultaneous extraction method for organophosphate, pyrethroid, and neonicotinoid insecticides in aqueous samples. de Perre C; Whiting SA; Lydy MJ Arch Environ Contam Toxicol; 2015 May; 68(4):745-56. PubMed ID: 25608617 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of organophosphate and pyrethroid insecticides, pyrethroid transformation products, polybrominated diphenyl ethers and bisphenol A in residential surface wipe samples. Clifton MS; Wargo JP; Weathers WS; Colón M; Bennett DH; Tulve NS J Chromatogr A; 2013 Jan; 1273():1-11. PubMed ID: 23265991 [TBL] [Abstract][Full Text] [Related]
5. Aquatic life water quality criteria derived via the UC Davis method: II. Pyrethroid insecticides. Fojut TL; Palumbo AJ; Tjeerdema RS Rev Environ Contam Toxicol; 2012; 216():51-103. PubMed ID: 22298113 [TBL] [Abstract][Full Text] [Related]
6. Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States. Williams WM; Giddings JM; Purdy J; Solomon KR; Giesy JP Rev Environ Contam Toxicol; 2014; 231():77-117. PubMed ID: 24723134 [TBL] [Abstract][Full Text] [Related]
7. Combining QSAR and SSD to predict aquatic toxicity and species sensitivity of pyrethroid and organophosphate pesticides. Untersteiner H; Rippey B; Gromley A; Douglas R SAR QSAR Environ Res; 2024 Jul; 35(7):611-640. PubMed ID: 39229871 [TBL] [Abstract][Full Text] [Related]
8. Measuring internal azole and pyrethroid pesticide concentrations in Daphnia magna using QuEChERS and GC-ECD--method development with a focus on matrix effects. Kretschmann A; Cedergreen N; Christensen JH Anal Bioanal Chem; 2016 Feb; 408(4):1055-66. PubMed ID: 26677019 [TBL] [Abstract][Full Text] [Related]
9. Development of a stir-bar-sorptive extraction-liquid desorption-large-volume injection capillary gas chromatographic-mass spectrometric method for pyrethroid pesticides in water samples. Serôdio P; Nogueira JM Anal Bioanal Chem; 2005 Jun; 382(4):1141-51. PubMed ID: 15937663 [TBL] [Abstract][Full Text] [Related]
10. Development of passive samplers for in situ measurement of pyrethroid insecticides in surface water. Xue J; Liao C; Wang J; Cryder Z; Xu T; Liu F; Gan J Environ Pollut; 2017 May; 224():516-523. PubMed ID: 28259582 [TBL] [Abstract][Full Text] [Related]
11. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment. Li H; Wei Y; Lydy MJ; You J Environ Pollut; 2014 Jul; 190():19-26. PubMed ID: 24704807 [TBL] [Abstract][Full Text] [Related]
12. Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece). Kapsi M; Tsoutsi C; Paschalidou A; Albanis T Sci Total Environ; 2019 Feb; 650(Pt 2):2188-2198. PubMed ID: 30292989 [TBL] [Abstract][Full Text] [Related]
13. Development of polyurethane-based passive samplers for ambient monitoring of urban-use insecticides in water. Liao C; Richards J; Taylor AR; Gan J Environ Pollut; 2017 Dec; 231(Pt 2):1412-1420. PubMed ID: 28939123 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Köck-Schulmeyer M; Ginebreda A; González S; Cortina JL; de Alda ML; Barceló D Chemosphere; 2012 Jan; 86(1):8-16. PubMed ID: 21925700 [TBL] [Abstract][Full Text] [Related]
15. Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Mekebri A; Crane DB; Blondina GJ; Oros DR; Rocca JL Bull Environ Contam Toxicol; 2008 May; 80(5):455-60. PubMed ID: 18369521 [TBL] [Abstract][Full Text] [Related]
16. Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water. Wang D; Weston DP; Lydy MJ Talanta; 2009 Jun; 78(4-5):1345-51. PubMed ID: 19362199 [TBL] [Abstract][Full Text] [Related]
17. Development of film-based passive samplers for in situ monitoring of trace levels of pyrethroids in sediment. Xu C; Wang J; Richards J; Xu T; Liu W; Gan J Environ Pollut; 2018 Nov; 242(Pt B):1684-1692. PubMed ID: 30072218 [TBL] [Abstract][Full Text] [Related]
18. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Papadakis EN; Vryzas Z; Kotopoulou A; Kintzikoglou K; Makris KC; Papadopoulou-Mourkidou E Ecotoxicol Environ Saf; 2015 Jun; 116():1-9. PubMed ID: 25733189 [TBL] [Abstract][Full Text] [Related]
19. Potentiation/Antagonism of pyrethroids with organophosphate insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). Ahmad M J Econ Entomol; 2007 Jun; 100(3):886-93. PubMed ID: 17598552 [TBL] [Abstract][Full Text] [Related]
20. Methodology for trace analysis of 17 pyrethroids and chlorpyrifos in foodstuff by gas chromatography-tandem mass spectrometry. Dallegrave A; Pizzolato TM; Barreto F; Eljarrat E; Barceló D Anal Bioanal Chem; 2016 Nov; 408(27):7689-7697. PubMed ID: 27544519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]