These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25240647)

  • 1. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts.
    Li G; Liu M; Rao M; Jiang T; Zhuang J; Zhang Y
    J Hazard Mater; 2014 Sep; 280():774-80. PubMed ID: 25240647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.
    Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L
    J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon.
    Li M; Peng B; Chai L; Peng N; Yan H; Hou D
    J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy.
    Yang D; Shi M; Zhang J; Sasaki A; Endo M
    J Hazard Mater; 2023 Jun; 452():131255. PubMed ID: 36989791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.
    Zhang Y; Li H; Yu X
    J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.
    Samouhos M; Taxiarchou M; Tsakiridis PE; Potiriadis K
    J Hazard Mater; 2013 Jun; 254-255():193-205. PubMed ID: 23611801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical and chemical separation of Ti, rare earth elements, Fe, and Al from red mud by carbothermal reduction, magnetic separation, and leaching.
    Habibi H; Pirouzan D; Shakibania S; Pourkarimi Z; Mokmeli M
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):62952-62972. PubMed ID: 35449328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues.
    Liu W; Yang J; Xiao B
    J Hazard Mater; 2009 Jan; 161(1):474-8. PubMed ID: 18457916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red mud recycling by Fe and Al recovery through the hydrometallurgy method: a collaborative strategy for aluminum and iron industry.
    Liu X; Zou Y; Geng R; Li B; Zhu T
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43377-43386. PubMed ID: 36656474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.
    Li J; Gan J; Li X
    J Hazard Mater; 2009 Jul; 166(2-3):1096-101. PubMed ID: 19157693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An active dealkalization of red mud with roasting and water leaching.
    Zhu X; Li W; Guan X
    J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of Sc
    Deng B; Li G; Luo J; Ye Q; Liu M; Peng Z; Jiang T
    J Hazard Mater; 2017 Jun; 331():71-80. PubMed ID: 28249182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure.
    Agatzini-Leonardou S; Oustadakis P; Tsakiridis PE; Markopoulos Ch
    J Hazard Mater; 2008 Sep; 157(2-3):579-86. PubMed ID: 18295399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hidden values in bauxite residue (red mud): recovery of metals.
    Liu Y; Naidu R
    Waste Manag; 2014 Dec; 34(12):2662-73. PubMed ID: 25269817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud.
    Yuan S; Liu X; Gao P; Han Y
    J Hazard Mater; 2020 Jul; 394():122579. PubMed ID: 32283382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Fe and Al from red mud by a novel fractional precipitation process.
    Yu F; Huangfu L; Wang C; Li C; Yu J; Li W; Gao S
    Environ Sci Pollut Res Int; 2020 May; 27(13):14642-14653. PubMed ID: 32052331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating red mud for the fabrication of cementitious material by analyzing the thermal evolution of hydrogarnets.
    Wang B; Wu J; Sun X; Jiang J; Yang Q; Li Q; Ye Z; Guo J; Wang X
    Environ Sci Pollut Res Int; 2023 May; 30(22):62993-63004. PubMed ID: 36952160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of iron and aluminum from iron-rich bauxite residue by an integrated phase reconstruction approach.
    Liu J; Peng C; Jiang J; Zhang X; He D; Zhou K; Chen W
    Sci Total Environ; 2023 Dec; 904():166702. PubMed ID: 37652375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process.
    Zhang R; Zheng S; Ma S; Zhang Y
    J Hazard Mater; 2011 May; 189(3):827-35. PubMed ID: 21444152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative route for valorising iron and aluminium oxide rich industrial wastes: Recovery of multiple metals.
    Khanna R; Konyukhov YV; Ikram-Ul-Haq M; Burmistrov I; Cayumil R; Belov VA; Rogachev SO; Leybo DV; Mukherjee PS
    J Environ Manage; 2021 Oct; 295():113035. PubMed ID: 34167061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.