These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25240740)

  • 1. A fault tree model to assess probability of contaminant discharge from shipwrecks.
    Landquist H; Rosén L; Lindhe A; Norberg T; Hassellöv IM; Lindgren JF; Dahllöf I
    Mar Pollut Bull; 2014 Nov; 88(1-2):239-48. PubMed ID: 25240740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian updating in a fault tree model for shipwreck risk assessment.
    Landquist H; Rosén L; Lindhe A; Norberg T; Hassellöv IM
    Sci Total Environ; 2017 Jul; 590-591():80-91. PubMed ID: 28314157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the needs of risk assessment methods of potentially polluting shipwrecks.
    Landquist H; Hassellöv IM; Rosén L; Lindgren JF; Dahllöf I
    J Environ Manage; 2013 Apr; 119():85-92. PubMed ID: 23467103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental risk assessment of shipwrecks: a fault-tree model for assessing the probability of contaminant release.
    Landquist H
    Integr Environ Assess Manag; 2013 Jul; 9(3):537-8. PubMed ID: 23847169
    [No Abstract]   [Full Text] [Related]  

  • 5. Expert elicitation for deriving input data for probabilistic risk assessment of shipwrecks.
    Landquist H; Norrman J; Lindhe A; Norberg T; Hassellöv IM; Lindgren JF; Rosén L
    Mar Pollut Bull; 2017 Dec; 125(1-2):399-415. PubMed ID: 28969906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A state-of-the-art model for spatial and stochastic oil spill risk assessment: A case study of oil spill from a shipwreck.
    Amir-Heidari P; Arneborg L; Lindgren JF; Lindhe A; Rosén L; Raie M; Axell L; Hassellöv IM
    Environ Int; 2019 May; 126():309-320. PubMed ID: 30825750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probability and possibility-based representations of uncertainty in fault tree analysis.
    Flage R; Baraldi P; Zio E; Aven T
    Risk Anal; 2013 Jan; 33(1):121-33. PubMed ID: 22831561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks.
    Shi L; Shuai J; Xu K
    J Hazard Mater; 2014 Aug; 278():529-38. PubMed ID: 25010458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiological risk assessment for field radiography based on two dimensional Monte Carlo analysis.
    Jang HK; Kim JY; Lee JK
    Appl Radiat Isot; 2009; 67(7-8):1521-5. PubMed ID: 19328699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the most likely failure point method for risk estimation and risk uncertainty analysis.
    Mitchell B
    J Hazard Mater; 2002 Apr; 91(1-3):1-24. PubMed ID: 11900903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two approaches to incorporate clinical data uncertainty into multiple criteria decision analysis for benefit-risk assessment of medicinal products.
    Wen S; Zhang L; Yang B
    Value Health; 2014 Jul; 17(5):619-28. PubMed ID: 25128056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Informational uncertainties of risk assessment about accidents of chemicals.
    Zhang YX
    J Environ Sci (China); 2001 Jan; 13(1):69-74. PubMed ID: 11590722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lognormal Approximations of Fault Tree Uncertainty Distributions.
    El-Shanawany AB; Ardron KH; Walker SP
    Risk Anal; 2018 Aug; 38(8):1576-1584. PubMed ID: 29377195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A standardised approach to the environmental risk assessment of potentially polluting wrecks.
    Goodsir F; Lonsdale JA; Mitchell PJ; Suehring R; Farcas A; Whomersley P; Brant JL; Clarke C; Kirby MF; Skelhorn M; Hill PG
    Mar Pollut Bull; 2019 May; 142():290-302. PubMed ID: 31232306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis.
    Baraldi P; Zio E
    Risk Anal; 2008 Oct; 28(5):1309-26. PubMed ID: 18631304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic effect assessment model for hazardous substances at the workplace.
    Schneider K; Schuhmacher-Wolz U; Hassauer M; Darschnik S; Elmshäuser E; Mosbach-Schulz O
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):172-81. PubMed ID: 16356615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of released heavy metals from electrical and electronic equipment (EEE) existing in shipwrecks through laboratory-scale simulation reactor.
    Hahladakis JN; Stylianos M; Gidarakos E
    J Hazard Mater; 2013 Apr; 250-251():256-64. PubMed ID: 23454465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the Reliability Theory for Assessing the Decision Confidence Probability for Comparative Life Cycle Assessments.
    Wei W; Larrey-Lassalle P; Faure T; Dumoulin N; Roux P; Mathias JD
    Environ Sci Technol; 2016 Mar; 50(5):2272-80. PubMed ID: 26815724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative estimation of uncertainty in human risk analysis.
    Sassi G; Vernai AM; Ruggeri B
    J Hazard Mater; 2007 Jun; 145(1-2):296-304. PubMed ID: 17175099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Framework for the uncertainty assessment in the impact pathway analysis with an application on a local scale in Spain.
    Sonnemann GW; Pla Y; Schuhmacher M; Castells F
    Environ Int; 2002 Apr; 28(1-2):9-18. PubMed ID: 12046959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.